Temperature Influences on Uptake, Translocation, and Metabolism of Alachlor in Snap Beans (Phaseolus vulgaris)

Weed Science ◽  
1980 ◽  
Vol 28 (2) ◽  
pp. 131-134 ◽  
Author(s):  
Robert P. Rice ◽  
A. R. Putnam

The uptake, translocation, and metabolism of14C-alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide] by germinating and emerged snap bean (Phaseolus vulgarisL.) seedlings were monitored under 16-h daylength (21 klux) comparing 16 C night/21 C Day and 27 C night/32 C day temperature regimes. Total uptake of14C-alachlor by germinating snap beans was greater under the higher temperature, however, the compound was localized primarily in the roots where it was rapidly metabolized. At the lower temperature, the label was located in approximately equal amounts in all plant parts except cotyledons and significantly less of the alachlor was metabolized. Root uptake of14C-alachlor and translocation of labeled compounds to the shoots were significantly greater under the higher temperatures. Approximately 60% of14C-alachlor was shown to volatilize from a watchglass after 48 h at 27 C. After volatilization, uptake of14C-alachlor occurred in adjacent snap bean plants in a closed system.

Weed Science ◽  
1979 ◽  
Vol 27 (5) ◽  
pp. 570-574 ◽  
Author(s):  
A. R. Putnam ◽  
Robert P. Rice

The influence of several environmental and edaphic factors on alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide] selectivity in snap bean (Phaseolus vulgarisL.) was examined. Crop safety was consistently improved when alachlor was applied preplant incorporated as compared to surface preemergence treatment. Under field conditions, maximum injury occurred either when temperatures during germination were cool and rainfall was minimal, or when temperatures approached or exceeded 27 C and the soil was saturated. In the growth chamber, more damage occurred under low temperature regimes, although volatilization of alachlor from moist soil also produced injury under higher temperatures. Injury was less severe in soils high in organic matter content. Alachlor injury decreased after 5 cm of simulated rainfall were applied on a loamy sand.


2005 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Helyes ◽  
Z. Pék ◽  
Gy. Varga ◽  
J. Dimény

The present paper evaluates the result of irrigation experiments carried out on snap beans sown in spring and summer and grown with and without irrigation. The experiments were run over the course of 12 years. In the average of 12 years, the yield was 2.8t ha-I for spring sown and 1.9 t ha-I in summer-sown plants without irrigation. The lowest level of profitable production, the 5.5t ha-I was reached twice in the case of spring sowing and only once in the case of summer sowing. Profitable yield production can be ensured only with regular irrigation and thus the yield may be increased by 4-5 times. In four of the twelve years we determined the canopy surface temperature of snap bean stands with and without irrigation. A Raynger II infrared remote thermometer determined the canopy surface temperature every day at 13.00 hours. The canopy temperature can well characterize the water supply of plant stands. This parameter may be used for describing the degree of drought and the water turnover of plant stands with different water supply. The positive values of foliage-air temperature differences (SDD) numerically express the degree of drought and the water supply of the crops. The results indicated that a 1 °C higher SDD value may cause 90-130 kg/ha yield loss.


1987 ◽  
Vol 1 (1) ◽  
pp. 18-21 ◽  
Author(s):  
Henry P. Wilson ◽  
Thomas E. Hines

Field studies were conducted for 3 yr to determine the foliar activity of acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid} for control of common lambsquarters (Chenopodium albumL. # CHEAL) in snap beans (Phaseolus vulgarisL. ‘Provider’ in 1983 and 1985 and ‘Green Crop’ in 1984). Control of 1 to 7 cm tall common lambsquarters varied between 75 and 100% with 0.28 kg ai/ha acifluorfen and frequently increased linearly with increases in acifluorfen rates to 0.84 kg/ha. Snap bean injury occurred each year and in 1985 was influenced by acifluorfen rate, stage of snap bean growth, and surfactant. Snap bean yields in 1983 were reduced linearly with increases in acifluorfen rates and in 1985 were reduced more from applications at the 1- to 2-trifoliolate leaf stage than at the 4- to 8-trifoliolate leaf stage. In the greenhouse, reductions in snap bean height from acifluorfen were related to application timing, surfactant and cultivar. Fresh weight reduction of snap beans was highest with the cultivar ‘Green Crop’ but was increased to both cultivars by early application timing and the addition of surfactant to the spray mix.


Plant Disease ◽  
2010 ◽  
Vol 94 (4) ◽  
pp. 487-487 ◽  
Author(s):  
T. C. Durham ◽  
C. Baker ◽  
L. Jones ◽  
L. Unruh Snyder

In October 2006, snap bean (Phaseolus vulgaris ‘Titan’) plants in an Alachua County field exhibited symptoms of foliar mottling, puckering, and curl. Symptomatic plants were distributed along field margins infested with whiteflies (100% incidence). Six collected leaf specimens all tested positive for nuclear inclusion bodies typical of begomoviruses with the methodology outlined by Christie et al. (1). To confirm the putative begomovirus association, total DNA was extracted with Qiagen's DNeasy Plant Mini Kit (Qiagen, Valencia, CA). The degenerate Begomovirus primers 5′-GCCCACATYGTCTTYCCNGT-3′ and 5′-GGCTTYCTRTACATRGG-3′ were used to amplify a 1.1-kb fragment of DNA-A (2). Primers SiGMVf 5′-CCTAAGCGCGATTTGCCAT-3′ and SiGMVr 5′-TACAGGGAGCTAAATCCAGCT-3′ were designed to amplify the remaining 1.5 kb of the DNA-A component. The sequence of both PCR products was compiled to generate a complete sequence of an A component (2,633 nt). BLAST analysis of this sequence (GenBank Accession No. GQ357649) isolated from snap bean indicated 95% nucleotide identity to Sida golden mosaic virus (SiGMV) (GenBank Accession No. AF049336) isolated from Sida santaremensis from Florida. To our knowledge, this is the first report of SiGMV in Florida snap beans. Further study is warranted to examine the etiological and economic implications of this finding. References: (1) R. G. Christie et al. Phytopathology 76:124, 1986. (2) M. R. Rojas et al. Plant Dis. 77:340, 1993.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 797B-797
Author(s):  
Juan M. Quintana ◽  
Helen C. Harrison ◽  
James Nienhuis

Calcium is an essential element for human nutrition. The lack of it causes various problems, such as osteoporosis. Snap beans rank as good sources of calcium among vegetables and are well-liked by most teenagers. In this study, pod yield and Ca concentration were analyzed for 64 genotypes of snap beans, plus four checks. The experimental design was a 8 x 8 double lattice, repeated at two locations (Arlington and Hancock, Wis.). Snap beans were planted in June 1993 and machine-harvested 67 days later, in Aug. 1993. Calcium analyses were made using an Atomic Absorption Spectometer. Results indicated significant differences for pod Ca concentration and yield. Pod size and Ca concentration showed a strong negative correlation (R = 89.5). Clear differences among the locations were also observed. Results were consistent—high-Ca genotypes remained high regardless of location or pod size. Selected genotypes appeared to have the ability to absorb Ca easier than others, but this factor was not related to yield.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 687a-687
Author(s):  
Juan M. Quintana ◽  
Helen C. Harrison ◽  
James Nienhuis ◽  
Jiwan P. Palta

Flow rate, Ca content, and Ca concentration of sieve sap were measured at four developmental stages (flowering and 1, 2, and 3 weeks after flowering) in six commercial snap bean cultivars to better understand physiological factors associated with genetic differences for pod Ca concentration. Sampling began 5 weeks after greenhouse planting and consisted of 1) decapitation of the plant at the first node; 2) covering the stem with preweighed dry cotton; and 3) removing the cotton, reweighing it, and saving it for Ca determination. Flow rate was defined as the difference in cotton weight (expressed as milliliter) per 12 hours. Ca determinations were made using an atomic absorption spectrophotometer. Calcium content was defined as milligram of Ca per total volume of sieve sap after 12 hours. Concentration of Ca was the quotient of Ca content by flow rate (expressed as milligrams Ca per milliliter sap). A positive correlation between flow rate and total Ca content of sieve sap (R2 = 0.83), flow rate and Ca concentration of sieve sap (R2 = 0.36), and Ca content and Ca concentration (R2 = 0.80) were found. Maturity appeared to be an important factor affecting flow rate and Ca influx in snap bean plants. Significant differences between genotypes for Ca content and flow rate were observed. High Ca genotypes reflected a high flow rate regardless developmental stage.


1970 ◽  
Vol 35 (3) ◽  
pp. 525-534 ◽  
Author(s):  
SR Saha ◽  
MM Hossain ◽  
MM Rahman ◽  
CG Kuo ◽  
S Abdullah

A study on heat tolerance in sweet pepper was conducted at the Asian Vegetable Research and Development Centre (AVRDC), Taiwan from December 1999 to May 2000. Experiments were carried out to investigate the influence of 29/23°C and 24/18°C stress on 12 sweet pepper genotypes on growth, development, reproductive behaviour and yield potentialities and to verify the results of the phytotron study. Performance of 12 sweet pepper genotypes was evaluated under two different temperature regimes of 24/18° C and 29/23° C in the phytotron. Plant height was found higher at 29/23° C compared to 24/18° C. High temperature reduced percent fruit set as well as size of fruits. Individual fruit weight was higher (7.44-125.00 g) when grown at 24/18°C and lower (5.35-103.80 g) at 29/23°C. Out of 12 genotypes, SP00l, SP002, SP004, and SP012 performed poor in respect of per plant yield at higher temperature compared to the lower temperature. So, these four genotypes were considered to be heat sensitive than the others. Leaf proline content of the sensitive genotypes decreased under the high temperature conditions and the heat tolerant lines produced higher amount of proline indicating the role of proline in expressing the heat tolerant capability of sweet pepper genotypes concerned. Keywords: High temperature stress; performance; sweet pepper. DOI: 10.3329/bjar.v35i3.6459Bangladesh J. Agril. Res. 35(3) : 525-534


Insects ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 35 ◽  
Author(s):  
Abdul Basit ◽  
Abdul Hanan ◽  
Talha Nazir ◽  
Muhammad Majeed ◽  
Dewen Qiu

Elicitors are biofactors that induce resistance in plants against different insect pests. This in vitro study evaluated the impact of a novel elicitor protein PeBC1, extracted from a necrotrophic fungus Botrytis cinerea, on the development and fecundity parameters of green peach aphid (Myzus persicae) on common beans (Phaseolus vulgaris L.). Three different concentrations of PeBC1 elicitor (i.e., 33.56, 25.43, 19.33 µg mL−1) were applied at three different temperature regimes (i.e., 18, 21, and 25 °C). Elicitor treatments were applied topically on the bean plants at 3-leaf stage and newly emerged (0–6 h old) apterous adult aphids were exposed to these treated leaves. In addition to the biological parameters of aphids, the relative expression levels of key genes associated with jasmonic acid (JA) and salicylic acid (SA) plant defense pathways were also determined through RT-qPCR. Results of bioassays revealed that the application of PeBC1 elicitor protein exhibited pronounced and significant (p < 0.05) sub-lethal effects on green peach aphids. The fecundity was reduced and the nymphal development time was prolonged by different concentrations of PeBC1 elicitor and temperature regimes. Gene expression studies showed that the exogenous application of PeBC1 induced a significant upregulation of the expression levels of JA and SA pathway-associated genes in bean plants. As compared to control, elicitor-treated plants exhibited an induced resistance against aphids. Our findings suggest the potential use of PeBC1 elicitor protein in future bio-intensive management strategies against sap-sucking insect pests such as green peach aphids.


HortScience ◽  
2000 ◽  
Vol 35 (1) ◽  
pp. 92-94 ◽  
Author(s):  
V.L. Smith

Emergence of snap beans (Phaseolus vulgaris L.) in field soil in 1995 to 1997 was reduced by the addition of dried, ground canola [Brassica napus L. ssp. oleifera (Metzg.) Sinsk. f. biennis] leaves and petioles to the furrow at planting. Soil amendment with the tissue increased the number of nodules on bean roots in all years. In plots with reduced stand, leaf area was increased and yield on a per-plant basis was larger than in plots with a better stand. Total yield was increased in plots with fewer plants only in 1995. Frequency of isolation of fungi that cause damping-off was not affected by the addition of canola at planting. When used as a seed treatment and incorporated at planting, canola residues were detrimental to emergence of snap bean.


1990 ◽  
Vol 4 (4) ◽  
pp. 743-748 ◽  
Author(s):  
Philip E. Neary ◽  
Bradley A. Majek

The effect of common cocklebur interference on snap beans was investigated at Bridgeton, NJ, in 1987 and 1988. Snap bean yields were reduced by increasing weed densities. Yields were reduced 8 to 44% in 1987 and 2 to 55% in 1988 by full-season in-row weed densities ranging from 0.5 to 8/m2. One weed and 4 weeds/m2were the damage-threshold populations of common cocklebur with full-season interference in 1987 and 1988, respectively. The weed-free requirement, after planting, was to the unifoliolate stage of snap beans. Common cocklebur at 4 weeds/m2did not affect yield when snap beans were maintained weed free until the unifoliolate stage of snap beans. The critical duration of interference for common cocklebur emerging with snap beans was between the emergence and full-bloom stage of snap beans. Snap bean yield was not reduced with weed removal at full bloom.


Sign in / Sign up

Export Citation Format

Share Document