Cellular Characteristics of Dinitroaniline Herbicide-Resistant Goosegrass (Eleusine indica)

Weed Science ◽  
1991 ◽  
Vol 39 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Bernal E. Valverde ◽  
Arnold P. Appleby ◽  
Steven R. Radosevich ◽  
Alfred Soeldner

Primary root cells from five dinitroaniline-resistant (R) and three susceptible (S) goosegrass biotypes from North Carolina and South Carolina were observed by transmission electron microscopy to determine whether resistance was associated with changes in cell wall formation. Cell wall malformations were found in some cells from two of the R-biotypes and in one of the S-biotypes. Malformations consisted of partially deposited cell walls and the inclusion of cell wall material in the cytoplasm. Some of the affected cells also had abnormal, lobed nuclei and malformed mitochondria. There seems to be little or no correlation between dinitroaniline resistance and cell wall malformations.

2018 ◽  
Vol 15 (8) ◽  
pp. 513
Author(s):  
Ewen Silvester ◽  
Annaleise R. Klein ◽  
Kerry L. Whitworth ◽  
Ljiljana Puskar ◽  
Mark J. Tobin

Environmental contextSphagnum moss is a widespread species in peatlands globally and responsible for a large fraction of carbon storage in these systems. We used synchrotron infrared microspectroscopy to characterise the acid-base properties of Sphagnum moss and the conditions under which calcium uptake can occur (essential for plant tissue integrity). The work allows a chemical model for Sphagnum distribution in the landscape to be proposed. AbstractSphagnum is one the major moss types responsible for the deposition of organic soils in peatland systems. The cell walls of this moss have a high proportion of carboxylated polysaccharides (polygalacturonic acids), which act as ion exchangers and are likely to be important for the structural integrity of the cell walls. We used synchrotron light source infrared microspectroscopy to characterise the acid-base and calcium complexation properties of the cell walls of Sphagnum cristatum stems, using freshly sectioned tissue confined in a flowing liquid cell with both normal water and D2O media. The Fourier transform infrared spectra of acid and base forms are consistent with those expected for protonated and deprotonated aliphatic carboxylic acids (such as uronic acids). Spectral deconvolution shows that the dominant aliphatic carboxylic groups in this material behave as a monoprotic acid (pKa=4.97–6.04). The cell wall material shows a high affinity for calcium, with a binding constant (K) in the range 103.9–104.7 (1:1 complex). The chemical complexation model developed here allows for the prediction of the chemical environment (e.g. pH, ionic content) under which Ca2+ uptake can occur, and provides an improved understanding for the observed distribution of Sphagnum in the landscape.


Holzforschung ◽  
2005 ◽  
Vol 59 (6) ◽  
pp. 675-680 ◽  
Author(s):  
Jonas Brändström ◽  
Jean-Paul Joseleau ◽  
Alain Cochaux ◽  
Nathalie Giraud-Telme ◽  
Katia Ruel

Abstract Transmission electron microscopy was used to investigate the ultrastructure of recycled pulp fibers originating from a household collection plant and intended for the production of packaging paper. Three recovered paper grades and recycling processes, including pulping, screening, cleaning and refining, were assessed with emphasis on surface and internal fibrillation as well as xylan localization. Results showed a large heterogeneity with respect to fiber ultrastructure within and between the grades. Screening and cleaning steps had no detectable effects, but refining clearly increased cell-wall delamination and surface fibrillation. Immunolabeling of xylans showed that they were distributed rather evenly across the cell walls. They were also present on fines. Two different mechanisms for fiber delamination and surface fibrillation were found, one which implies that internal and external fibrillation take place simultaneously across the cell wall, and another which implies successive peeling of layers or sub-layers from the outside towards the inside. It is suggested that recycled fibers of chemical pulp origin undergo the former mechanism and recycled fibers that contain lignin binding the cell wall matrix give rise to the latter peeling mechanism. Because several recycled fibers were severely delaminated and almost fractured, we suggest that to produce a good packaging paper, it is important that recycled pulp should contain a significant proportion of fibers with high intrinsic strength.


Author(s):  
Lukasz Wejnerowski ◽  
Slawek Cerbin ◽  
Maria K. Wojciechowicz ◽  
Marcin K. Dziuba

<p>Recent studies have shown that the filamentous cyanobacterium <em>Aphanizomenon gracile</em> Lemmermann, strain SAG 31.79, consists of two types of filaments that differ in thickness. These two types are known to vary in resistance to <em>Daphnia</em> <em>magna</em> grazing: thin filaments (&lt;2.5 µm) are more vulnerable to grazing than the thick ones (&gt;2.5 µm). In this study, we investigated whether the difference in the vulnerability to grazing of thin and thick filaments is a result of different thickness of their cell walls, a filament stiffness determinant. We expected thick filaments to have thicker cell walls than the thin ones. Additionally, we analysed whether cell wall thickness correlates with filament thickness regardless of the filament type. A morphometric analysis of cell walls was performed using transmission electron micrographs of ultra-thin sections of the batch-cultured cyanobacterial material.  Our study revealed that the thin type of filaments had thinner cell walls than the thick filaments. Moreover, cell wall thickness was positively correlated with filament thickness. TEM (transmission electron microscopy) observations also revealed that the thin type of filaments was often at different stages of autocatalytic cell destruction, which was mainly manifested in the increase in cell vacuolization and degradation of the cytoplasm content. Based on our findings, we assume that previously reported higher resistance of thick filaments to <em>Daphnia</em> grazing results from greater stiffness and excellent physiological conditions of thick filaments. </p>


2019 ◽  
Vol 20 (7) ◽  
pp. 1650 ◽  
Author(s):  
Anna Milewska-Hendel ◽  
Maciej Zubko ◽  
Danuta Stróż ◽  
Ewa Kurczyńska

Increasing usage of gold nanoparticles (AuNPs) in different industrial areas inevitably leads to their release into the environment. Thus, living organisms, including plants, may be exposed to a direct contact with nanoparticles (NPs). Despite the growing amount of research on this topic, our knowledge about NPs uptake by plants and their influence on different developmental processes is still insufficient. The first physical barrier for NPs penetration to the plant body is a cell wall which protects cytoplasm from external factors and environmental stresses. The absence of a cell wall may facilitate the internalization of various particles including NPs. Our studies have shown that AuNPs, independently of their surface charge, did not cross the cell wall of Arabidopsis thaliana (L.) roots. However, the research carried out with using light and transmission electron microscope revealed that AuNPs with different surface charge caused diverse changes in the root’s histology and ultrastructure. Therefore, we verified whether this is only the wall which protects cells against particles penetration and for this purpose we used protoplasts culture. It has been shown that plasma membrane (PM) is not a barrier for positively charged (+) AuNPs and negatively charged (−) AuNPs, which passage to the cell.


1992 ◽  
Vol 70 (5) ◽  
pp. 933-941 ◽  
Author(s):  
E. Garnier-Sillam ◽  
I. Grech ◽  
Y. Czaninski ◽  
M.-T. Tollier ◽  
B. Monties

Free cell-wall residues were prepared by extracting wood samples of spruce (Populus euramericana cv. Fidzi Pauley) and poplar (Picea sitchensis). These species were chosen for their lignin types: guaiacyl in spruce and guaiacyl–syringyl in poplar. The parietal residues obtained were used as the sole food for the xylophagous termite Reticulitermes lucifugus var. santonensis and were compared before and after ingestion and transit in the digestive tracts. Differences due to the mechanical action of the gizzard were found in association with chemical changes. Polysaccharides were unmasked after digestion and could clearly be observed after reaction with periodic acid – thiocarbohydrazide – silver proteinate. A fibrillary meshwork was also observed inside the lignified cell walls. Biodegradation of cell wall material was particularly clear in poplar where granules formed an electron-dense plasma when uranyl acetate – lead citrate or periodic acid – thiocarbohydrazide – silver proteinate was used as a contrast medium. A selective biodegradation of syringyl monomers in poplar parietal residues was indicated by thioacidolysis but requires confirmation. Breakdown of lignified cell walls begins with a biodegradation of the lignin network associated with or followed by the digestion of polysaccharides. Syringyl-rich lignin fractions seemed to break down faster. Whether the enzymic pathway leading to ligninolysis originates from the termite digestive cells or from the endosymbionts present in their digestive tract lumen remains to be defined. Key words: Isoptera, Reticulitermes lucifugus var. santonensis, wood, lignin, spruce, poplar.


1996 ◽  
Vol 74 (12) ◽  
pp. 1974-1981 ◽  
Author(s):  
C. Batisse ◽  
P. J. Coulomb ◽  
C. Coulomb ◽  
M. Buret

The changes in texture of fruits during ripening are linked to cell wall degradation involving synthesis and degradation of polymers. An increase in pectin solubility leads to cell sliding and an elastic aspect of tissues. The biochemical cell wall process differs between soft and crisp fruits originating from a same cultivar but cultivated under different agroclimatic conditions. Although the proportions of cell wall material are similar, the composition and structure of the two cell walls are very different at maturity. A solubilization of the middle lamella and a restructuration of the primary cell walls arising from the cells separation is observed in crisp fruits. In contrast, the middle lamella of the soft fruits is better preserved and the primary cell walls are thin and show degradation bags delimited by residual membrane formations. In addition, the macroendocytosis process by endosome individualization is more important in soft fruits. In conclusion, the fruit texture depends on the extent of the links between cell wall polymers. Keywords: cherry, cell wall, texture, ultrastructural study.


Holzforschung ◽  
1999 ◽  
Vol 53 (2) ◽  
pp. 111-117 ◽  
Author(s):  
A.O. Rapp ◽  
H. Bestgen ◽  
W. Adam ◽  
R.-D. Peek

Summary A literature survey was performed to find progress in techniques for monitoring penetration of synthetic resins in wood cell walls. Electron energy loss spectroscopy (EELS) in combination with transmission electron microscopy (TEM) was successfully applied for the high resolution examination of the distribution of a partly methylated hydroxymethyl melamine resin in Norway spruce (Picea abies Karst.) earlywood cell walls. The nitrogen of the resin was found as clearly detectable signals in all layers of the lignified cell wall, thus allowing the quantification of resin which had penetrated into the different layers. Possible principles of decay protection of wood which has been upgraded with low concentrated aqueous solutions of modified hydroxymethyl melamine resins with medium to low hydroxymethyl/melamine ratios are discussed.


1959 ◽  
Vol 5 (6) ◽  
pp. 641-648 ◽  
Author(s):  
R. G. E. Murray ◽  
W. H. Francombe ◽  
B. H. Mayall

Cultures of sensitive stains of Staphylococcus aureus were fixed with osmium tetroxide after 1–5 hours' exposure to various does of pencillin and were embedded in methacrylate for sectioning and electron microscopy. They were compared with untreated, control cultures. The contrast of the cell wall material was untreated, control cultures. The contrast of the cell wall material was increased, by cutting the section of lanthanum nitrate.The cells increased in size and the surrounding cell wall was thinner than normal. The main lesions appeared in the developing cell wall septa, which showed a loss in density and gross irregularity of shape. Some questionable inclusions were seen in the cytoplasm. Lysis was prevented in a medium containing 0.3 M sucrose and the stable spheroplasts retained a recognizable cell wall after 24 hours' exposure to penicillin. However, the septa could not be demonstrated in the cells treated in sucrose medium.Two resistant strains were exposed to penicillin. In one, the cells showed no morphological effects; in the other, there was temporary damage to the cell septa with complete recovery.The observations support the hypothesis that penicillin interferes with the synthesis of a cell wall component and indicate that the main point of cell wall synthesis is at the site of septum formation.


1987 ◽  
Vol 65 (12) ◽  
pp. 2483-2489 ◽  
Author(s):  
H. C. Huang ◽  
E. G. Kokko

Transmission electron microscopy revealed that hyphae of the hyperparasite Coniothyrium minitans invade sclerotia of Sclerotinia sclerotiorum, resulting in the destruction and disintegration of the sclerotium tissues. The dark-pigmented rind tissue is more resistant to invasion by the hyperparasite than the unpigmented cortical and medullary tissues. Evidence from cell wall etching at the penetration site suggests that chemical activity is required for hyphae of C. minitans to penetrate the thick, melanized rind walls. The medullary tissue infected by C. minitans shows signs of plasmolysis, aggregation, and vacuolization of cytoplasm and dissolution of the cell walls. While most of the hyphal cells of C. minitans in the infected sclerotium tissue are normal, some younger hyphal cells in the rind tissue were lysed and devoid of normal contents.


1974 ◽  
Vol 142 (1) ◽  
pp. 139-144 ◽  
Author(s):  
Dianna J. Bowles ◽  
D. H. Northcote

1. Maize seedling roots were incubated in vivo with d-[U-14C]glucose for 2, 5, 10, 15, 30 and 45min. The total incorporation of radioactivity into polysaccharide components in isolated fractions was investigated, and the pattern of incorporation into different polysaccharide components within the rough endoplasmic reticulum, Golgi apparatus and exported material was analysed. 2. The membrane compartments reached a saturation value of radioactivity in polysaccharide components by 30min incubation. Radioactivity in exported polysaccharide continued to increase after that time. The latter was formed and maintained by a steady-state turnover of polysaccharide synthesis and transport from the membrane system. 3. If the only access of the slime polysaccharide to the cell surface is via dictyosome-derived vesicles, the amount of slime components in the Golgi apparatus would have to be displaced every 0.3min in order to maintain the observed rates of increase in slime. This is in contrast with a displacement time of about 2.5min that is necessary for polysaccharide components in the Golgi apparatus to produce the observed increase in cell-wall material. The activity of the membrane system in the production of maize root slime is 8 times as great as that of the membrane system involved in cell-wall synthesis. 4. If the amount of polysaccharide material in the Golgi apparatus is maintained only by inflow of polymeric material from the rough endoplasmic reticulum the total amount of slime components in the rough endoplasmic reticulum would have to be displaced every 7min to maintain a constant amount in the Golgi apparatus. If the endoplasmic reticulum contributed directly to the cell surface in the synthesis of cell-wall material, displacement times necessary to maintain the observed rate of polymer production would be very slow.


Sign in / Sign up

Export Citation Format

Share Document