How Can we Use Area Navigation in the Terminal Area?

1973 ◽  
Vol 26 (1) ◽  
pp. 55-60
Author(s):  
N. H. Hughes

The problems of integrating aircraft using area navigation into the terminal A.T.C. environment are discussed. It is concluded that area navigation systems currently available are incompatible with current terminal A.T.C. approach sequencing and that integration is only possible in the context of both computer assistance to the approach controller and data link between the A.T.C. computer and the aircraft navigation system. The benefits of Terminal Area Navigation are briefly considered and it is suggested that the deployment of vertical navigation in a procedural role might be the better first step. The paper was presented at the 19th Technical Conference of I.A.T.A., Dublin, 1972. Crown copyright.Currently available area navigation (R NAV) systems range from simple station-oriented single waypoint systems, allowing flight on paths which do not coincide with VOR radials, to complex systems in principle enabling flight from origin to destination along a pre-programmed route, including flight on a standard terminal arrival route (from holding point or feeder-fix to the approach gate). As far as Terminal Area Navigation is concerned it appears that the main objective to the R Nav system designers has been to provide a system which enables automatic navigation along the standard terminal arrival routes, as depicted in the Jeppeson Charts, and to display to the pilot his progress along the route. It appears that designers of the more sophisticated systems have tacitly assumed that when an R Nav aircraft enters the terminal area A.T.C. will be able and willing to allocate it such a route.

2019 ◽  
Vol 11 (4) ◽  
pp. 139-154
Author(s):  
M. RAJA ◽  
Gaurav ASTHANA ◽  
Ajay SINGH ◽  
Ashna SINGHAL ◽  
Pallavi LAKRA

Navigation has a huge application in aviation and aircraft automatic approach. Two widely used navigation systems are Global position System (GPS) and Inertial Navigation System (INS). Triangulation method used to determine the aircrafts location by GPS, speed whereas an INS, with the aid of gyroscope and accelerometer, estimates the location, velocity and alignment of an aircraft. Aircraft navigation is a complex task and using only one of the above navigation systems results in inaccurate and insufficient data. GPS stops working when satellite signal is not received, susceptible to interfere occasionally has high noise content, and has a low bandwidth, INS system requires external information for initialization has long-term drift errors. Certain errors like ionosphere interference, clock error, orbital error, position error, etc. might arise and disrupt the navigation process. In order to outrun the limitations of the above two systems and counter the errors, both INS and GPS can be integrated and used to attain more smooth, accurate and faster aircraft attitude estimates, as they have complementary strengths and limitations. GPS is stable for a long period and can act as an independent navigation system whereas INS is not susceptible to interference and signal losses has high radio bandwidth and works well for short intervals of time. In order to get accurate and precise attitude estimation, calculation of the parameters at different altitude using both systems is done; furthermore the comparison and contrast between the results is performed, measured quantities are transformed between various frames like longitudinal to rolling, calculation and elimination of errors is done producing the final solution. Because of integrated GPS and INS, the navigation system exhibits robustness, higher bandwidth, better noise characteristics, and long-term stability.


2005 ◽  
Vol 58 (3) ◽  
pp. 405-417 ◽  
Author(s):  
David J. Allerton ◽  
Huamin Jia

This paper reviews currently existing fault-tolerant navigation system architectures and data fusion methods used in the design and development of integrated aircraft navigation systems and also compares their advantages and disadvantages. Four fault-tolerant navigation system architectures are reviewed and the associated Kalman filter architectures and algorithms are discussed. These techniques have been used in most integrated aircraft navigation systems. The aim of this review paper is to provide a guide for navigation system designers to develop future aircraft multisensor navigation systems.


The aircraft navigation complex consisting of the inertial (ANC) and satellite (SNS) navigation systems is considered. An algorithm for the detection accuracy and stability increasing at the failures of the aircraft navigation complex in the mode of joint operation of the ANS and SNS, as well as in the absence of a signal from the SNS is proposed. In the linear Kalman filter the Chi-square test is used. The results of mathematical modeling have shown the high efficiency of the algorithmic solution. Keywords aircraft; inertial navigation system; satellite navigation system; linear Kalman filter; fault tolerance; Chi-square test


1965 ◽  
Vol 18 (3) ◽  
pp. 257-284
Author(s):  
E. Heap

In navigating an aircraft visually over terrain the chance of successfully reaching the destination greatly depends upon the human element together with the visual aids provided. Some visual factors are studied in detail in this paper, particularly the detection and identification of ground features from the air. The suitability of various identification points for use as visual fixes is assessed quantitatively and the interaction between navigational accuracy and feature detection is discussed. The effects of visibility, speed and search are also studied. Visual aids considered include different scale maps, heading information, and fixed, zoom and search optics on television. A number of navigational tasks are covered, from following line features to direct cross-country tracks. Successive visual up-dating of a mixed manual and automatic navigation system is then assessed theoretically.


1961 ◽  
Vol 65 (604) ◽  
pp. 267-272 ◽  
Author(s):  
P. C. Parks

Automatic navigation systems for aircraft often use gyroscopes to measure the changes in the direction of motion of the aircraft they are controlling. These measurements are fed back to the mechanisms moving the control surfaces of the aircraft.Such a system is usually designed, in the first instance, assuming the aircraft structure to be rigid and such that the system is then stable.Now suppose the aircraft structure, considered elastic, is disturbed in flight by, say, a gust. Normal modes of vibration of the structure will be excited, the resulting oscillations will be detected by the gyroscope and fed as error signals to the control surface actuators. If the actuators are capable of following these error signals, the control surfaces will also oscillate, exciting the structure further and so completing the cycle. This cycle may be unstable.


2010 ◽  
Vol 6 (3) ◽  
pp. 60
Author(s):  
Richard Schilling ◽  

Atrial fibrillation (AF) is linked to an increased risk of adverse cardiovascular events. While rhythm control with antiarrhythmic drugs (AADs) is a common strategy for managing patients with AF, catheter ablation may be a more efficacious and safer alternative to AADs for sinus rhythm control. Conventional catheter ablation has been associated with challenges during the arrhythmia mapping and ablation stages; however, the introduction of two remote catheter navigation systems (a robotic and a magnetic navigation system) may potentially overcome these challenges. Initial clinical experience with the robotic navigation system suggests that it offers similar procedural times, efficacy and safety to conventional manual ablation. Furthermore, it has been associated with reduced fluoroscopy exposure to the patient and the operator as well as a shorter fluoroscopy time compared with conventional catheter ablation. In the future, the remote navigation systems may become routinely used for complex catheter ablation procedures.


2020 ◽  
Vol 2 (Supplement_3) ◽  
pp. ii2-ii3
Author(s):  
Kazuhiko Kurozumi

Abstract Navigation systems are reliable and safe for neurological surgery. Navigation is an attractive and innovative therapeutic option. Recently, endo and exoscopic surgeries have been gradually increasing in neurosurgery. We are currently trialing to use 4K and 8K systems to improve the accuracy and safety of our surgical procedures. Surgeries for deep-seated tumors are challenging because of the difficulty in creating a corridor and observing the interface between lesions and the normal area. In total, 315 patients underwent surgery at Okayama University between 2017 and 2019. Among them, we experienced 92 glioma surgeries using navigation systems. Preoperatively, we performed computed tomography imaging and contrast-enhanced magnetic resonance imaging (MRI) for the neuronavigation system. We experienced Curve(TM) Image Guided Surgery (BrainLab, Munich, Germany). The surgical trajectory was planned with functional MRI and diffusion tensor imaging to protect the eloquent area and critical vasculature of the brain. We used a clear plastic tubular retractor system, the ViewSite Brain Access System, for surgery of deep seated gliomas. We gently inserted and placed the ViewSite using the neuronavigation. The tumor was observed and resected through the ViewSite tubular retractor under a microscope and endoscope. If the tumor was large, we switched the ViewSite tubular retractor to brain spatulas to identify the boundary between the normal brain and lesion. We are currently using the combination of the tubular retractor and brain spatulas using navigation system. Here, we present and analyze our preoperative simulation, surgical procedure, and outcomes.


2012 ◽  
Vol 245 ◽  
pp. 323-329 ◽  
Author(s):  
Muhammad Ushaq ◽  
Jian Cheng Fang

Inertial navigation systems exhibit position errors that tend to grow with time in an unbounded mode. This degradation is due, in part, to errors in the initialization of the inertial measurement unit and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Mitigation to this growth and bounding the errors is to update the inertial navigation system periodically with external position (and/or velocity, attitude) fixes. The synergistic effect is obtained through external measurements updating the inertial navigation system using Kalman filter algorithm. It is a natural requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertia Navigation System (SINS), Global Positioning System (GPS) and Doppler radar is presented using a centralized linear Kalman filter by treating vector measurements with uncorrelated errors as scalars. Two main advantages have been obtained with this improved scheme. First is the reduced computation time as the number of arithmetic computation required for processing a vector as successive scalar measurements is significantly less than the corresponding number of operations for vector measurement processing. Second advantage is the improved numerical accuracy as avoiding matrix inversion in the implementation of covariance equations improves the robustness of the covariance computations against round off errors.


Author(s):  
Д.А. Смирнов ◽  
В.Г. Бондарев ◽  
А.В. Николенко

Проведен краткий анализ как отечественных, так и зарубежных систем межсамолетной навигации. В ходе анализа были отражены недостатки систем межсамолетной навигации и представлен актуальный подход повышения точности системы навигации за счет применения системы технического зрения. Для определения местоположения ведущего самолета предлагается рассмотреть в качестве измерительного комплекса систему технического зрения, которая способна решать большой круг задач на различных этапах, в частности, и полет строем. Систему технического зрения предлагается установить на ведомом самолете с целью измерения всех параметров, необходимых для формирования автоматического управления полетом летательного аппарата. Обработка изображений ведущего самолета выполняется с целью определения координат трех идентичных точек на фоточувствительных матрицах. Причем в качестве этих точек выбираются оптически контрастные элементы конструкции летательного аппарата, например окончания крыла, хвостового оперения и т.д. Для упрощения процедуры обработки изображений возможно использование полупроводниковых источников света в инфракрасном диапазоне (например, с длиной волны λ = 1,54 мкм), что позволяет работать даже в сложных метеоусловиях. Такой подход может быть использован при автоматизации полета строем более чем двух летательных аппаратов, при этом необходимо только оборудовать системой технического зрения все ведомые самолеты группы The article provides a brief analysis of both domestic and foreign inter-aircraft navigation systems. In the course of the analysis, we found the shortcomings of inter-aircraft navigation systems and presented an up-to-date approach to improving the accuracy of the navigation system through the use of a technical vision system. To determine the location of the leading aircraft, we proposed to consider a technical vision system as a measuring complex, which is able to solve a large range of tasks at various stages, in particular, flight in formation. We proposed to install the technical vision system on the slave aircraft in order to measure all the parameters necessary for the formation of automatic flight control of the aircraft. We performed an image processing of the leading aircraft to determine the coordinates of three identical points on photosensitive matrices. Moreover, we selected optically contrasting elements of the aircraft structure as these points, for example, the end of the wing, tail, etc. To simplify the image processing procedure, it is possible to use semiconductor light sources in the infrared range (for example, with a wavelength of λ = 1.54 microns), which allows us to work even in difficult weather conditions. This approach can be used when automating a flight in formation of more than two aircraft, while it is only necessary to equip all the guided aircraft of the group with a technical vision system


Sign in / Sign up

Export Citation Format

Share Document