Electron microscopy in the community hospital

Author(s):  
Gary S. Pearl

A common misconception exists that a diagnostic electron microscopy laboratory can not succeed fiscally in a community hospital. This has not been the case in our institution. An electron microscopy laboratory was established in 1982 and the initial investment by the hospital was recovered within four years. Billings have remained relatively constant during the past several years. In addition to financial considerations, the laboratory has been beneficial diagnostically, allowing for rapid, easy access to this valuable tool. In fact, the presence of an electron microscope in the hospital has probably encouraged further utilization of this technology. The electron microscopy laboratory has also been an asset in our teaching program, not only for the demonstration of the ultrastructural findings themselves, but also for the consultative material sent from other institutions. Finally, the laboratory has opened up research possibilities not otherwise available.

Author(s):  
J. L. Farrant ◽  
J. D. McLean

For electron microscope techniques such as ferritin-labeled antibody staining it would be advantageous to have available a simple means of thin sectioning biological material without subjecting it to lipid solvents, impregnation with plastic monomers and their subsequent polymerization. With this aim in view we have re-examined the use of protein as an embedding medium. Gelatin which has been used in the past is not very satisfactory both because of its fibrous nature and the high temperature necessary to keep its solutions fluid. We have found that globular proteins such as the serum and egg albumins can be cross-linked so as to yield blocks which are suitable for ultrathin sectioning.


1997 ◽  
Vol 3 (S2) ◽  
pp. 285-286
Author(s):  
T.M. Carvalho ◽  
M.F. Dunlap ◽  
R.D. Allen

The Biological Electron Microscope Facility (BEMF) at the University of Hawai‘i at Mānoa (UHM) is located 2400 miles over water from the next nearest research university. BEMF is a multi-user core facility, administered by the Pacific Biomedical Research Center (PBRC), an organized research unit at the UHM. The mission of the BEMF is to provide state-of-the-art instrumentation, services and training for electron microscopy to the biomedical and biological researchers in Hawai‘i and the Pacific region. The BEMF was established in 1984 under the direction of Dr. Richard D. Allen, and has since grown steadily in its instrumentation, expertise, and use. In the past 5 years it has served researchers from over 50 laboratories in PBRC and the colleges of Natural Sciences, Tropical Agriculture and Human Resources, Engineering, Medicine, and Ocean and Earth Sciences and Technology, as well as visiting investigators from other Hawai‘i, mainland and foreign institutions.The BEMF has a full line of instrumentation for conventional transmission and field emission scanning electron microscopy as well as a complete line of instruments for cryoelectron microscopy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fabian Christopher Herrmann

AbstractAs a topographical technique, Atomic Force Microscopy (AFM) needs to establish direct interactions between a given sample and the measurement probe in order to create imaging information. The elucidation of internal features of organisms, tissues and cells by AFM has therefore been a challenging process in the past. To overcome this hindrance, simple and fast embedding, sectioning and dehydration techniques are presented, allowing the easy access to the internal morphology of virtually any organism, tissue or cell by AFM. The study at hand shows the applicability of the proposed protocol to exemplary biological samples, the resolution currently allowed by the approach as well as advantages and shortcomings compared to classical ultrastructural microscopic techniques like electron microscopy. The presented cheap, facile, fast and non-toxic experimental protocol might introduce AFM as a universal tool for the elucidation of internal ultrastructural detail of virtually any given organism, tissue or cell.


Author(s):  
Linda M. Stannard ◽  
Margaret Lennon

Burnupena cincta and Fusus verruculatus are two whelks which inhabit the intertidal zones of the Cape Peninsula shore. Their respiratory pigments, or haemocyanins, are morphologically similar in structure (Figs. 1 and 2) and appear in the electron microscope as short cylindrical rods about 34 nm in diameter and 36 nm high. Viewed side-on the molecules show regular banding suggesting a structure composed of six equidistant rings of sub-units. Occasionally the particles have the appearance of possessing a central “belt” in the position of the 3rd and 4th rows of sub-units. End-on views of the haemocyanin molecules show a circular contour with a dense outer ring and a less dense inner ring in which 10 definite sub-units may frequently be distinguished. A number of molecules display an extra central inner component which appears either as a diffuse plug or as a discrete ring-shaped core ± 8 nm in diameter.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Author(s):  
O.C. de Hodgins ◽  
K. R. Lawless ◽  
R. Anderson

Commercial polyimide films have shown to be homogeneous on a scale of 5 to 200 nm. The observation of Skybond (SKB) 705 and PI5878 was carried out by using a Philips 400, 120 KeV STEM. The objective was to elucidate the structural features of the polymeric samples. The specimens were spun and cured at stepped temperatures in an inert atmosphere and cooled slowly for eight hours. TEM micrographs showed heterogeneities (or nodular structures) generally on a scale of 100 nm for PI5878 and approximately 40 nm for SKB 705, present in large volume fractions of both specimens. See Figures 1 and 2. It is possible that the nodulus observed may be associated with surface effects and the structure of the polymers be regarded as random amorphous arrays. Diffraction patterns of the matrix and the nodular areas showed different amorphous ring patterns in both materials. The specimens were viewed in both bright and dark fields using a high resolution electron microscope which provided magnifications of 100,000X or more on the photographic plates if desired.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


Author(s):  
J. D. Hutchison

When the transmission electron microscope was commercially introduced a few years ago, it was heralded as one of the most significant aids to medical research of the century. It continues to occupy that niche; however, the scanning electron microscope is gaining rapidly in relative importance as it fills the gap between conventional optical microscopy and transmission electron microscopy.IBM Boulder is conducting three major programs in cooperation with the Colorado School of Medicine. These are the study of the mechanism of failure of the prosthetic heart valve, the study of the ultrastructure of lung tissue, and the definition of the function of the cilia of the ventricular ependyma of the brain.


Author(s):  
William B. McCombs ◽  
Cameron E. McCoy

Recent years have brought a reversal in the attitude of the medical profession toward the diagnosis of viral infections. Identification of bacterial pathogens was formerly thought to be faster than identification of viral pathogens. Viral identification was dismissed as being of academic interest or for confirming the presence of an epidemic, because the patient would recover or die before this could be accomplished. In the past 10 years, the goal of virologists has been to present the clinician with a viral identification in a matter of hours. This fast diagnosis has the potential for shortening the patient's hospital stay and preventing the administering of toxic and/or expensive antibiotics of no benefit to the patient.


Author(s):  
Lawrence W. Ortiz ◽  
Bonnie L. Isom

A procedure is described for the quantitative transfer of fibers and particulates collected on membrane filters to electron microscope (EM) grids. Various Millipore MF filters (Millipore AA, HA, GS, and VM; 0.8, 0.45, 0.22 and 0.05 μm mean pore size) have been used with success. Observed particle losses have not been size dependent and have not exceeded 10%. With fibers (glass or asbestos) as the collected media this observed loss is approximately 3%.


Sign in / Sign up

Export Citation Format

Share Document