The Possibilities for Analytical Methods in Photoemission and Low-Energy Electron Microscopy

Author(s):  
Ernst Bauer

One of the major shortcomings of conventional PEEM and of LEEM is the lack of chemical information about the surface. Although the imaging of the LEED pattern in the back focal plane of the objective lens of a LEEM instrument allows chemical characterization via the crystalline structure derived from the LEED pattern, this method fails in the absence of a characteristic LEED pattern. Direct information about the atomic composition of the surface is then needed which can be best obtained from inner shell electrons either directly by x-ray-induced photoemission (XPEEM) or by x-ray- or electron-induced Auger electron emission (AEEM). These modes of excitation and imaging can be combined with conventional PEEM and LEEM in one instrument which is presently being developed. Thus a complete structural and chemical characterization becomes possible in one instrument, with parallel detection and high resolution.In contrast to LEEM, in which up to more than 50% of the incident intensity is available for image formation, the intensity of the emitted electrons is much lower in XPEEM and AEEM and the signal is much lower than the background in AEEM. Therefore, intensity I and resolution d have to be optimized simultaneously which is best done by maximizing Q = I/d2 with respect to maximum emission angle α and relative energy distribution ε = ΔVo/V accepted by the instrument. For a well-designed magnetic lens section of the cathode lens its aberrations are determined by the accelerating field F in front of the specimen. For a homogeneous accelerating field F and a cosine emission distribution one obtains for the optimum α and ε values αo,εo a radius of the minimum disc of confusion of

Author(s):  
S. Suzuki ◽  
A. Ishikawa

For the development of the electron microscope, in which high resolving power is demanded, it is important to construct an electron objective lens with minimum spherical aberration.In 1943, one of the authors published the paper on the approximate calculation of the electromagnetic field to give a minimum spherical aberration and also published the papers on small spherical aberration lens design based on this calculation.We will speak a comparison between the experimental results and the numerical calculations in practical cases.The following line shows the method to get more strictly minimum spherical aberration of magnetic lens.In a space charge free electron optical system, where a pure magnetic lens is concerned, differential equation for paraxial electron path is given byU being the initial voltage applied to the electron beam and γ the path distance from the optical axis Z.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 702
Author(s):  
Muriel Bouttemy ◽  
Solène Béchu ◽  
Ben F. Spencer ◽  
Pia Dally ◽  
Patrick Chapon ◽  
...  

Chemical characterization at buried interfaces is a real challenge, as the physico-chemical processes operating at the interface govern the properties of many systems and devices. We have developed a methodology based on the combined use of pulsed RF GD-OES (pulsed Radio Frequency Glow Discharge Optical Emission Spectrometry) and XPS (X-ray Photoelectron Spectroscopy) to facilitate the access to deeply buried locations (taking advantage of the high profiling rate of the GD-OES) and perform an accurate chemical diagnosis using XPS directly inside the GD crater. The reliability of the chemical information is, however, influenced by a perturbed layer present at the surface of the crater, hindering traditional XPS examination due to a relatively short sampling depth. Sampling below the perturbed layer may, however, can be achieved using a higher energy excitation source with an increased sampling depth, and is enabled here by a new laboratory-based HAXPES (Hard X-ray PhotoElectron Spectroscopy) (Ga-Kα, 9.25 keV). This new approach combining HAXPES with pulsed RF GD-OES requires benchmarking and is here demonstrated and evaluated on InP. The perturbed depth is estimated and the consistency of the chemical information measured is demonstrated, offering a new route for advanced chemical depth profiling through coatings and heterostructures.


Author(s):  
J.R. Fryer

Reported efforts to obtain molecular images have hitherto been confined to chlorinated copper phthalocyanine that is atypical in having a high thermal and radiation stability. The radiation limited resolution of molecules has been described by the minimum resolvable object sizeC being object contrastf electron utilisation factorNcr critical exposure for specimen destructionThe normal value used for C is approximately 0.1 but since this is the parameter most ameanable to improvement, efforts to increase C were made These efforts included the use of a high resolution objective lens of Cs = 0.67mm so that the constant phase contrast transfer envelope extended down to 3Å at the Scherzer defocus, and a 20μm condenser aperture Minimal exposure techniques were used with Ilford X-ray film to overcome the difficulties of low beam intensity and mechanical vibration of the specimen.Our previous studies on α' copper phthalocyanine(2) had required the specimen to be tilted for molecular superimposition on the unit cell b axis, A survey of a variety of hydrocarbons revealed that structures of planar molecules where the molecular plane makes an angle of greater than 40° to the b axis, tend to grow on KC1 with the b axis normal to substrate - i,e. no tilting is required to image a column of superimposed molecules.


Author(s):  
Richard L. McConville

A second generation twin lens has been developed. This symmetrical lens with a wider bore, yet superior values of chromatic and spherical aberration for a given focal length, retains both eucentric ± 60° tilt movement and 20°x ray detector take-off angle at 90° to the tilt axis. Adjust able tilt axis height, as well as specimen height, now ensures almost invariant objective lens strengths for both TEM (parallel beam conditions) and STEM or nano probe (focused small probe) modes.These modes are selected through use of an auxiliary lens situ ated above the objective. When this lens is on the specimen is illuminated with a parallel beam of electrons, and when it is off the specimen is illuminated with a focused probe of dimensions governed by the excitation of the condenser 1 lens. Thus TEM/STEM operation is controlled by a lens which is independent of the objective lens field strength.


Author(s):  
N. J. Zaluzec

The ultimate sensitivity of microchemical analysis using x-ray emission rests in selecting those experimental conditions which will maximize the measured peak-to-background (P/B) ratio. This paper presents the results of calculations aimed at determining the influence of incident beam energy, detector/specimen geometry and specimen composition on the P/B ratio for ideally thin samples (i.e., the effects of scattering and absorption are considered negligible). As such it is assumed that the complications resulting from system peaks, bremsstrahlung fluorescence, electron tails and specimen contamination have been eliminated and that one needs only to consider the physics of the generation/emission process.The number of characteristic x-ray photons (Ip) emitted from a thin foil of thickness dt into the solid angle dΩ is given by the well-known equation


Author(s):  
G. Cliff ◽  
M.J. Nasir ◽  
G.W. Lorimer ◽  
N. Ridley

In a specimen which is transmission thin to 100 kV electrons - a sample in which X-ray absorption is so insignificant that it can be neglected and where fluorescence effects can generally be ignored (1,2) - a ratio of characteristic X-ray intensities, I1/I2 can be converted into a weight fraction ratio, C1/C2, using the equationwhere k12 is, at a given voltage, a constant independent of composition or thickness, k12 values can be determined experimentally from thin standards (3) or calculated (4,6). Both experimental and calculated k12 values have been obtained for K(11<Z>19),kα(Z>19) and some Lα radiation (3,6) at 100 kV. The object of the present series of experiments was to experimentally determine k12 values at voltages between 200 and 1000 kV and to compare these with calculated values.The experiments were carried out on an AEI-EM7 HVEM fitted with an energy dispersive X-ray detector.


Author(s):  
J.M. Titchmarsh

The advances in recent years in the microanalytical capabilities of conventional TEM's fitted with probe forming lenses allow much more detailed investigations to be made of the microstructures of complex alloys, such as ferritic steels, than have been possible previously. In particular, the identification of individual precipitate particles with dimensions of a few tens of nanometers in alloys containing high densities of several chemically and crystallographically different precipitate types is feasible. The aim of the investigation described in this paper was to establish a method which allowed individual particle identification to be made in a few seconds so that large numbers of particles could be examined in a few hours.A Philips EM400 microscope, fitted with the scanning transmission (STEM) objective lens pole-pieces and an EDAX energy dispersive X-ray analyser, was used at 120 kV with a thermal W hairpin filament. The precipitates examined were extracted using a standard C replica technique from specimens of a 2¼Cr-lMo ferritic steel in a quenched and tempered condition.


Author(s):  
Peter Rez

In high resolution microscopy the image amplitude is given by the convolution of the specimen exit surface wave function and the microscope objective lens transfer function. This is usually done by multiplying the wave function and the transfer function in reciprocal space and integrating over the effective aperture. For very thin specimens the scattering can be represented by a weak phase object and the amplitude observed in the image plane is1where fe (Θ) is the electron scattering factor, r is a postition variable, Θ a scattering angle and x(Θ) the lens transfer function. x(Θ) is given by2where Cs is the objective lens spherical aberration coefficient, the wavelength, and f the defocus.We shall consider one dimensional scattering that might arise from a cross sectional specimen containing disordered planes of a heavy element stacked in a regular sequence among planes of lighter elements. In a direction parallel to the disordered planes there will be a continuous distribution of scattering angle.


Author(s):  
Uwe Lücken ◽  
Michael Felsmann ◽  
Wim M. Busing ◽  
Frank de Jong

A new microscope for the study of life science specimen has been developed. Special attention has been given to the problems of unstained samples, cryo-specimens and x-ray analysis at low concentrations.A new objective lens with a Cs of 6.2 mm and a focal length of 5.9 mm for high-contrast imaging has been developed. The contrast of a TWIN lens (f = 2.8 mm, Cs = 2 mm) and the BioTWTN are compared at the level of mean and SD of slow scan CCD images. Figure 1a shows 500 +/- 150 and Fig. 1b only 500 +/- 40 counts/pixel. The contrast-forming mechanism for amplitude contrast is dependent on the wavelength, the objective aperture and the focal length. For similar image conditions (same voltage, same objective aperture) the BioTWIN shows more than double the contrast of the TWIN lens. For phasecontrast specimens (like thin frozen-hydrated films) the contrast at Scherzer focus is approximately proportional to the √ Cs.


Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


Sign in / Sign up

Export Citation Format

Share Document