Effect of Herbicides on Take-All Disease (Gaeumannomyces graminis) in Winter Wheat (Triticum aestivum)

1990 ◽  
Vol 4 (3) ◽  
pp. 478-481
Author(s):  
Ray M. Geddens ◽  
Arnold P. Appleby ◽  
Robert L. Powelson

Experiments were conducted in each of two seasons to determine possible effects of diclofop, difenzoquat, dinoseb, and mecoprop on the incidence of take-all disease and grain yield of winter wheat. All of the herbicides, especially mecoprop, reduced incidence of take-all. Treatments increased grain yields the first year but not the second, compared to the inoculated weed-free control. None of the herbicides tested increased incidence or severity of take-all disease in either of the two seasons. The technique of inoculating disease-free soil was successful in obtaining uniform and reproducible incidence of disease.

1991 ◽  
Vol 31 (2) ◽  
pp. 255 ◽  
Author(s):  
RF Brennan

The effect of copper (Cu) fertiliser on the incidence and severity of take-all of wheat was examined in 5 field experiments on soils naturally infested with Gaeumannomyces graminis var. tritici.Wheat (Triticum aestivum L.) was grown in soils at 5 levels of Cu fertiliser, ranging from nil to luxury levels of Cu (i.e. 5.0 kg Cuba) for wheat growth and grain yield. One soil was adequately supplied in Cu for wheat growth and yield. Copper-deficient wheat plants were more susceptible (P<0.05) to take-all than those plants with an adequate supply of Cu. The addition of Cu fertiliser beyond that required for maximum plant growth and grain yield had no effect (P<0.05) on the incidence and severity of take-all of wheat.


1990 ◽  
Vol 115 (2) ◽  
pp. 209-219 ◽  
Author(s):  
J. McEwen ◽  
R. J. Darby ◽  
M. V. Hewitt ◽  
D. P. Yeoman

SUMMARYThe effects on a winter wheat test crop of a preliminary year of winter or spring field beans (Vicia faba), winter oats, winter oilseed rape, winter or spring peas (Pisum sativum), winter wheat, spring lupins (Lupinus albus), spring sunflowers (Helianthus annuus) or a cultivated fallow were compared in three 2-year experiments on clay-with-flints soil at Rothamsted from 1986 to 1989. In one experiment, autumn-sown ryegrass (Lolium perenne) and an uncultivated fallow, given weedkiller, were also included in the first year. Plots of test-crop wheat were divided to compare no N fertilizer with an optimal amount estimated from a predictive model.Amounts of take-all (Gaeumannomyces graminis) in the test crop of wheat following wheat were very slight in the first experiment, but large in the second and third. All the break crops reduced takeall to none or very slight amounts.Amounts of NO3-N in the soil in autumn after the first-year crops ranged from 7 to 95 kg N/ha. On average, they were least after oats, and most after cultivated fallow. In autumn 1988they were least after autumn-sown ryegrass. In early spring, amounts of NO3-N were generally less, ranging from 7 to 55 kg N/ha, depending on preceding crops, sowing date of the wheat and the weather. Amounts of NH4-N in soil were little affected by preceding crops or weather and were generally smaller in spring.The estimated average N fertilizer requirement of test-crop wheat following winter wheat was 230kg N/ha. This was increased by 10 kg N/ha following winter oats, decreased by 40 kg N/ha after spring peas and by 30 kg N/ha after winter rape, winter peas, spring beans and cultivated fallow. Other preliminary crops not represented every year had effects within this range.Grain yields of test-crop wheat given optimal N averaged 7·2 t/ha after winter wheat, c.1·5 t/ha less than the average after most of the break crops. The yield after oats was limited by self-sown ‘volunteers’ and that after ryegrass by limited soil N after ploughing.Of the break crops tested, winter and spring beans, winter oats, winter rape and spring peas all gave satisfactory yields. A farmer should choose between these on the basis of local farm circumstances and current economics of the break crops. Differences between effects on take-all and savings on fertilizer N were too small to influence this decision.


1992 ◽  
Vol 6 (4) ◽  
pp. 820-823 ◽  
Author(s):  
Arnold P. Appleby ◽  
Bill D. Brewster

Studies were conducted to determine whether cross-seeding of winter wheat, while maintaining an equal seeding rate per hectare, would increase wheat grain yields and help the wheat compete more effectively against Italian ryegrass than conventional seeding. Wheat was seeded at rates of 50, 100, and 150 kg ha-1 in conventional parallel rows or cross seeded in a grid pattern. Ryegrass was seeded at densities of 0, 20, 100, and 200 plants per m-2. Cross-seeded wheat yielded less grain than single-seeded wheat in 1990 in the absence of ryegrass; there were no differences in 1991. Cross seeding did not reduce competition from Italian ryegrass. Ryegrass was highly competitive against wheat, especially in 1990. Even 20 plants per m-2 reduced grain yield by an average of 38%. Wheat seeding rate had essentially no effect on grain yield in 1990, but the higher seeding rates reduced yields in 1991 because of extensive lodging. In 1991, wheat grain yields were higher in the cross-seeded plots than the single-seeded plots at the two high wheat seeding rates and highest ryegrass densities. Cross seeding does not appear promising as an aid to controlling ryegrass in Pacific Northwest wheat.


2017 ◽  
Vol 155 (9) ◽  
pp. 1394-1406 ◽  
Author(s):  
X. M. MAO ◽  
W. W. ZHONG ◽  
X. Y. WANG ◽  
X. B. ZHOU

SUMMARYThe production of winter wheat (Triticum aestivum L.) is affected by crop population structures and field microclimates. This 3-year study assessed the effect of different precision planting patterns and irrigation conditions on relative humidity (RH), air and soil temperature within the canopy, intercepted photosynthetically active radiation (iPAR), evapotranspiration (ET), water productivity (WP) and grain yields. Field experiments were conducted from 2011 to 2014 on a two-factor split-plot design with three replicates. The experiments involved three precision planting patterns (single row, alternating single and twin rows [hereafter ‘single–twin’] and twin row) and three irrigation treatments (0 mm (I0), 90 mm (I90) and 180 mm (I180)). Planting patterns and irrigation treatments exerted a significant effect on RH, air and soil temperature, iPAR, ET, WP and grain yield. The lowest RH and iPAR levels were detected in the single row pattern. When the irrigation treatment was identical, the highest soil and air temperatures were detected in the single row pattern, followed by the single–twin row and twin row patterns. Compared with the single row, the single–twin and twin row patterns increased ET by 0·3 and 1·4, WP by 4·7 and 5·7% and yields by 6·0 and 7·9%, respectively. Compared with I0, the I90 and I180 irrigation treatments increased ET by 0·3 and 1·4%, and WP by 4·7 and 5·7%, respectively. The grain yields of the twin row pattern were 5·8 and 1·7% higher than those of the single row and single–twin row patterns, respectively. Compared with I0, I90 increased yield by 19·3%. The twin row pattern improved crop structure and farmland microclimate by increasing RH and iPAR, and reducing soil and air temperatures, thus increasing grain yield. These results indicated that a twin row pattern effectively improved grain yield at I0. On the basis of iPAR, WP and grain yield, it was concluded that a twin row pattern combined with an I90 irrigation treatment provided optimal cropping conditions for the North China plain.


2018 ◽  
Vol 64 (No. 4) ◽  
pp. 156-163
Author(s):  
Wang Dapeng ◽  
Zheng Liang ◽  
Gu Songdong ◽  
Shi Yuefeng ◽  
Liang Long ◽  
...  

Excessive nitrogen (N) and water input, which are threatening the sustainability of conventional agriculture in the North China Plain (NCP), can lead to serious leaching of nitrate-N (NO<sub>3</sub><sup>–</sup>-N). This study evaluates grain yield, N and water consumption, NO<sub>3</sub><sup>–</sup>-N accumulation and leaching in conventional and two optimized winter wheat-summer maize double-cropping systems and an organic alfalfa-winter wheat cropping system. The results showed that compared to the conventional cropping system, the optimized systems could reduce N, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching by 33, 35 and 67–74%, respectively, while producing nearly identical grain yields. In optimized systems, soil NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was about 80 kg N/ha most of the time. In the organic system, N input, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching was reduced even more (by 71, 43 and 92%, respectively, compared to the conventional system). However, grain yield also declined by 46%. In the organic system, NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was generally less than 30 kg N/ha. The optimized systems showed a considerable potential to reduce N and water consumption and NO<sub>3</sub><sup>–</sup>-N leaching while maintaining high grain yields, and thus should be considered for sustainable agricultural development in the NCP.  


1997 ◽  
Vol 11 (1) ◽  
pp. 30-34
Author(s):  
Jeffrey A. Koscelny ◽  
Thomas F. Peeper

Seven field experiments were conducted in Oklahoma to compare efficacy and wheat response to currently registered cheat suppression or control herbicide treatments. Chlorsulfuron + metsulfuron premix (5:1 w/w) at 26 g ai/ha applied PRE controlled cheat 20 to 61%, increased wheat grain yields at two of seven locations, and decreased dockage due to cheat at five of seven locations. Chlorsulfuron + metsulfuron at 21 g/ha tank-mixed with metribuzin at 210 g/ha, applied early fall POST, controlled cheat 36 to 98% and increased wheat yield at four of seven locations. Metribuzin applied POST in the fall at 420 g/ha controlled cheat 56 to 98% and increased wheat yields at five of seven locations. Both POST treatments decreased dockage at all locations.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xiu-Xiu Chen ◽  
Wei Zhang ◽  
Xiao-Yuan Liang ◽  
Yu-Min Liu ◽  
Shi-Jie Xu ◽  
...  

Abstract Although researchers have determined that attaining high grain yields of winter wheat depends on the spike number and the shoot biomass, a quantitative understanding of how phosphorus (P) nutrition affects spike formation, leaf expansion and photosynthesis is still lacking. A 3-year field experiment with wheat with six P application rates (0, 25, 50, 100, 200, and 400 kg P ha−1) was conducted to investigate this issue. Stem development and mortality, photosynthetic parameters, dry matter accumulation, and P concentration in whole shoots and in single tillers were studied at key growth stages for this purpose. The results indicated that spike number contributed the most to grain yield of all the yield components in a high-yielding (>8 t/ha) winter wheat system. The main stem (MS) contributed 79% to the spike number and tiller 1 (T1) contributed 21%. The 2.7 g kg−1 tiller P concentration associated with 15 mg kg−1 soil Olsen-P at anthesis stage led to the maximal rate of productive T1s (64%). The critical shoot P concentration that resulted in an adequate product of Pn and LAI was identified as 2.1 g kg−1. The thresholds of shoot P concentration that led to the maximum productive ability of T1 and optimal canopy photosynthetic capacity at anthesis were very similar. In conclusion, the thresholds of soil available P and shoot P concentration in whole plants and in single organs (individual tillers) were established for optimal spike formation, canopy photosynthetic capacity, and dry matter accumulation. These thresholds could be useful in achieving high grain yields while avoiding excessive P fertilization.


Sign in / Sign up

Export Citation Format

Share Document