Effect of zinc chloride and sodium selenite supplementation on in vitro maturation, oxidative biomarkers, and gene expression in buffalo (Bubalus bubalis) oocytes

Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Wael A. Khalil ◽  
Chun-Yan Yang ◽  
Mostafa M. El-Moghazy ◽  
Mohamed S. El-Rais ◽  
Jiang-Hua Shang ◽  
...  

Summary This study examined the effects of zinc chloride (ZnCl2) and sodium selenite (Na2SeO3) supplementation in maturation medium on in vitro maturation (IVM) rate, oxidative biomarkers and gene expression in buffalo oocytes. Ovaries from a slaughterhouse were aspirated and good quality cumulus–oocyte complexes (COCs) with at least four layers of compact cumulus cells and evenly granulated dark ooplasm were selected. COCs were randomly allocated during IVM (22 h) to one of four treatment groups: (1) control maturation medium (basic medium), or basic medium supplemented with (2) ZnCl2 (1.5 µg/ml), (3) Na2SeO3 (5 µg/l), or (4) ZnCl2 + Na2SeO3 (1.5 µg/ml + 5 µg/l, respectively). Oocytes were denuded after 22 h of IVM in the first four replicates. Specimens were fixed and stained to evaluate the stage of nuclear maturation. The spent medium was collected for biochemical assays of total antioxidant capacity (TAC), malondialdehyde (MDA) and hydrogen peroxide concentrations. A second four replicates were used for COCs for RNA extraction. The expression levels of antioxidant (SOD1, GPX4, CAT and PRDX1), antiapoptotic (BCL2 and BCL-XL) and proapoptotic (BAX and BID) genes were measured. Supplementation with ZnCl2 and Na2SeO3 during IVM increased the ratio of oocytes reaching metaphase II at 22 h, increased TAC and decreased MDA and H2O2 concentrations in the maturation medium (P < 0.05). Moreover, beneficial effects were associated with complementary changes in expression patterns of antioxidative, antiapoptotic and proapoptotic genes, suggesting lower oxidative stress and apoptosis. Supplementation medium with zinc chloride and sodium selenite improves the maturation rate, reduces oxidative stress and increases expression levels of antioxidative and antiapoptotic genes.

Circulation ◽  
2021 ◽  
Vol 144 (Suppl_2) ◽  
Author(s):  
Tomoaki Aoki ◽  
Koichiro Shinozaki ◽  
Yu Okuma ◽  
Kei Hayashida ◽  
Ryosuke Takegawa ◽  
...  

Objective: We recently reported that post-resuscitation normoxic therapy attenuates oxidative stress in multiple organs and improves post-cardiac arrest (CA) organ injury, oxygen metabolism, and survival. Yet, detailed mechanisms of gene expression patterns and signaling pathways mitigated by normoxic therapy have not been elucidated. Therefore, we assessed post-resuscitation normoxic therapy-modified gene expression of oxidative stress-related signaling molecules. Methods: Rats were resuscitated from 10 minutes of asphyxial CA and divided into 2 groups: those that inhaled 100% supplemental O 2 (CA-FIO2 1.0) and those that inhaled 30% supplemental O 2 (CA-FIO2 0.3). Control groups were also prepared for comparison (control-FIO2 1.0, control-FIO2 0.3). At 2 hours after resuscitation, brain and heart tissues were collected, and mRNA purifications followed by real-time PCR measurements were performed to compare gene expression of hyperoxia-induced inflammatory and apoptosis-related signaling pathways amongst these groups. Results: In the brain, relative IL-1 beta mRNA gene expression levels, which represent inflammatory signaling pathways, increased post-CA (8.1±2.3 in CA-FIO2 1.0 and 1.0±0.4 in control-FIO2 0.3, p<0.05), but were significantly attenuated by normoxic therapy (2.3±0.2 in CA-FIO2 0.3, p<0.05). Likewise, normoxic therapy significantly reduced oxidative stress-induced inflammatory (NFKB1, TGFB1, MAPK14, TRAF6) and apoptosis-related (BAX, EGF) mRNA gene expression levels in the brain, whereas no statistical differences were detected in the heart. Conclusions: Post-CA normoxic therapy significantly attenuated the gene expression of oxidative stress-induced inflammation and apoptosis in the brain, while there were no remarkable changes in the heart. Therefore, it is inferred that the heart is more tolerant to hyperoxic injury compared to the brain.


Zygote ◽  
2013 ◽  
Vol 23 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Xian-rong Xiong ◽  
Dao-liang Lan ◽  
Jian Li ◽  
Yong Wang ◽  
Jin-cheng Zhong

SummaryInterspecies somatic cell nuclear transfer (iSCNT), a powerful tool in basic scientific research, has been used widely to increase and preserve the population of endangered species. Yak (Bos grunniens) is one of these species. Development to term of interspecies cloned yak embryos has not been achieved, possibly due to abnormal epigenetic reprogramming. Previous studies have demonstrated that treatment of intraspecies cloned embryos with (NaBu) significantly improves nuclear–cytoplasmic reprogramming and viability in vitro. Therefore, in this study, we evaluated the effect of optimal NaBu concentration and exposure time on preimplantation development of yak iSCNT embryos and on the expression patterns of developmentally important genes. The results showed that 8-cell rate, blastocyst formation rate and total cell number increased significantly compared with their untreated counterparts when yak iSCNT embryos were treated with 5 nM NaBu for 12 h after activation, but that the 2-cell stage embryo rate was not significantly different. The treatment of NaBu also increased significantly the expression levels of Oct-4 and decreased the expression levels of HDAC-2, Dnmt-1 and IGF-1; the expression patterns of these genes were more similar to that of their bovine–yak in vitro fertilization (BY-IVF) counterparts. The results described above indicated that NaBu treatment improved developmental competence in vitro and ‘corrected’ the gene expression patterns of yak iSCNT embryos.


Zuriat ◽  
2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Nono Carsono ◽  
Christian Bachem

Tuberization in potato is a complex developmental process resulting in the differentiation of stolon into the storage organ, tuber. During tuberization, change in gene expression has been known to occur. To study gene expression during tuberization over the time, in vitro tuberization system provides a suitable tool, due to its synchronous in tuber formation. An early six days axillary bud growing on tuber induction medium is a crucial development since a large number of genes change in their expression patterns during this period. In order to identify, isolate and sequencing the genes which displaying differential pattern between tuberizing and non-tuberizing potato explants during six days in vitro tuberization, cDNA-AFLP fingerprint, method for the visualization of gene expression using cDNA as template which is amplified to generate an RNA-fingerprinting, was used in this experiment. Seventeen primer combinations were chosen based on their expression profile from cDNA-AFLP fingerprint. Forty five TDFs (transcript derived fragment), which displayed differential expressions, were obtained. Tuberizing explants had much more TDFs, which developmentally regulated, than those from non tuberizing explants. Seven TDFs were isolated, cloned and then sequenced. One TDF did not find similarity in the current databases. The nucleotide sequence of TDF F showed best similarity to invertase ezymes from the databases. The homology of six TDFs with known sequences is discussed in this paper.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shauna Kehoe ◽  
Katarina Jewgenow ◽  
Paul R. Johnston ◽  
Susan Mbedi ◽  
Beate C. Braun

AbstractIn vitro growth (IVG) of dormant primordial ovarian follicles aims to produce mature competent oocytes for assisted reproduction. Success is dependent on optimal in vitro conditions complemented with an understanding of oocyte and ovarian follicle development in vivo. Complete IVG has not been achieved in any other mammalian species besides mice. Furthermore, ovarian folliculogenesis remains sparsely understood overall. Here, gene expression patterns were characterised by RNA-sequencing in primordial (PrF), primary (PF), and secondary (SF) ovarian follicles from Felis catus (domestic cat) ovaries. Two major transitions were investigated: PrF-PF and PF-SF. Transcriptional analysis revealed a higher proportion in gene expression changes during the PrF-PF transition. Key influencing factors during this transition included the interaction between the extracellular matrix (ECM) and matrix metalloproteinase (MMPs) along with nuclear components such as, histone HIST1H1T (H1.6). Conserved signalling factors and expression patterns previously described during mammalian ovarian folliculogenesis were observed. Species-specific features during domestic cat ovarian folliculogenesis were also found. The signalling pathway terms “PI3K-Akt”, “transforming growth factor-β receptor”, “ErbB”, and “HIF-1” from the functional annotation analysis were studied. Some results highlighted mechanistic cues potentially involved in PrF development in the domestic cat. Overall, this study provides an insight into regulatory factors and pathways during preantral ovarian folliculogenesis in domestic cat.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Hitoshi Iuchi ◽  
Michiaki Hamada

Abstract Time-course experiments using parallel sequencers have the potential to uncover gradual changes in cells over time that cannot be observed in a two-point comparison. An essential step in time-series data analysis is the identification of temporal differentially expressed genes (TEGs) under two conditions (e.g. control versus case). Model-based approaches, which are typical TEG detection methods, often set one parameter (e.g. degree or degree of freedom) for one dataset. This approach risks modeling of linearly increasing genes with higher-order functions, or fitting of cyclic gene expression with linear functions, thereby leading to false positives/negatives. Here, we present a Jonckheere–Terpstra–Kendall (JTK)-based non-parametric algorithm for TEG detection. Benchmarks, using simulation data, show that the JTK-based approach outperforms existing methods, especially in long time-series experiments. Additionally, application of JTK in the analysis of time-series RNA-seq data from seven tissue types, across developmental stages in mouse and rat, suggested that the wave pattern contributes to the TEG identification of JTK, not the difference in expression levels. This result suggests that JTK is a suitable algorithm when focusing on expression patterns over time rather than expression levels, such as comparisons between different species. These results show that JTK is an excellent candidate for TEG detection.


Author(s):  
Moath Alqaraleh ◽  
Violet Kasabri ◽  
Ibrahim Al-Majali ◽  
Nihad Al-Othman ◽  
Nihad Al-Othman ◽  
...  

Background and aims: Branched chain amino acids (BCAAs) can be tightly connected to metabolism syndrome (MetS) which can be counted as a metabolic indicator in the case of insulin resistance (IR). The aim of this study was to assess the potential role of these acids under oxidative stress. Material and Methods: the in vitro antioxidant activity of BCAAs was assessed using free radical 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging assays. For further check, a qRT-PCR technique was madefor detection the extent of alterations in gene expression of antioxidative enzymes (catalase and glutathione peroxidase (Gpx)) in lipopolysaccharides (LPS(-induced macrophages RAW 264.7 cell line. Additionally, BCAAs antioxidant activity was evaluated based on plasma H2O2 levels and xanthine oxidase (XO) activity in prooxidative LPS-treated mice. Results: Different concentrations of BCAAs affected on DPPH radical scavenging activity but to lesser extent than the ascorbic acid. Besides, BCAAs obviously upregulated the gene expression levels of catalases and Gpx in LPS-modulated macrophage RAW 264.7 cell line. In vivo BCAAs significantly minimized the level of plasma H2O2 as well as the activity of XO activity under oxidative stress. Conclusion: our current findings suggest that BCAAs supplementation may potentially serve as a therapeutic target for treatment of oxidative stress occurs with atherosclerosis, IR-diabetes, MetS and tumorigenesis.


2021 ◽  
Author(s):  
Jozsef Bodis ◽  
Endre Sulyok ◽  
Akos Varnagy ◽  
Viktória Prémusz ◽  
Krisztina Godony ◽  
...  

Abstract BackgroundThis observational clinical study evaluated the expression levels and predictive values of some apoptosis-related genes in granulosa cells (GCs) and follicular fluid (FF) of women undergoing in vitro fertilization (IVF).Methods GCs and FF were obtained at oocyte retrieval from 31 consecutive patients with heterogeneous infertility diagnosis (age: 34.3±5.8 years, body mass index: 24.02±3.12 kg/m2, duration of infertility: 4.2±2.1 years). mRNA expression of pro-apoptotic (BAX, CASP3, CASP8) and anti-apoptotic (BCL2, AMH, AMHR, FSHR, LHR, CYP19A1) factors was determined by quantitative RT-PCR using ROCHE LightCycler 480. Results No significant difference in GC or FF mRNA expression of pro- and anti-apoptotic factors could be demonstrated between IVF patients with (9 patients) or without (22 patients) clinical pregnancy. Each transcript investigated was detected in FF, but their levels were markedly reduced and independent of those in GCs. The number of retrieved oocytes was positively associated with GC AMHR (r=0.393, p=0.029), but the day of embryo transfer was negatively associated with GC LHR (r=-0.414, p=0.020) and GC FSHR transcripts (r=-0.535, p=0.002). When pregnancy positive group was analysed separately the impact of apoptosis- related gene expressions on some selected measures of IVF success could be observed. Strong positive relationship was found between gene expression levels of pro- and anti-apoptotic factors in GCs.ConclusionOur study provides only marginal evidences for the apoptosis dependence of IVF outcome and suggests that the apoptosis process induces adaptive increases of the anti-apoptotic gene expression to attenuate apoptosis and to protect cell survival.


2019 ◽  
Author(s):  
Robin A. Sorg ◽  
Clement Gallay ◽  
Jan-Willem Veening

AbstractStreptococcus pneumoniae can cause disease in various human tissues and organs, including the ear, the brain, the blood and the lung, and thus in highly diverse and dynamic environments. It is challenging to study how pneumococci control virulence factor expression, because cues of natural environments and the presence of an immune system are difficult to simulate in vitro. Here, we apply synthetic biology methods to reverse-engineer gene expression control in S. pneumoniae. A selection platform is described that allows for straightforward identification of transcriptional regulatory elements out of combinatorial libraries. We present TetR- and LacI-regulated promoters that show expression ranges of four orders of magnitude. Based on these promoters, regulatory networks of higher complexity are assembled, such as logic AND and IMPLY gates. Finally, we demonstrate single-copy genome-integrated toggle switches that give rise to bimodal population distributions. The tools described here can be used to mimic complex expression patterns, such as the ones found for pneumococcal virulence factors, paving the way for in vivo investigations of the importance of gene expression control on the pathogenicity of S. pneumoniae.


Author(s):  
Kenneth H. Hu ◽  
John P. Eichorst ◽  
Chris S. McGinnis ◽  
David M. Patterson ◽  
Eric D. Chow ◽  
...  

ABSTRACTSpatial transcriptomics seeks to integrate single-cell transcriptomic data within the 3-dimensional space of multicellular biology. Current methods use glass substrates pre-seeded with matrices of barcodes or fluorescence hybridization of a limited number of probes. We developed an alternative approach, called ‘ZipSeq’, that uses patterned illumination and photocaged oligonucleotides to serially print barcodes (Zipcodes) onto live cells within intact tissues, in real-time and with on-the-fly selection of patterns. Using ZipSeq, we mapped gene expression in three settings: in-vitro wound healing, live lymph node sections and in a live tumor microenvironment (TME). In all cases, we discovered new gene expression patterns associated with histological structures. In the TME, this demonstrated a trajectory of myeloid and T cell differentiation, from periphery inward. A variation of ZipSeq efficiently scales to the level of single cells, providing a pathway for complete mapping of live tissues, subsequent to real-time imaging or perturbation.


2021 ◽  
Author(s):  
Jianyuan Li ◽  
Hui Shi ◽  
Xiaoyu Liu ◽  
Yanwei Wang ◽  
Haiyan Wang ◽  
...  

Abstract I. Background: Peroxiredoxin 6 (Prdx6) is widely expressed in mammalian tissues. Our previous study demonstrated that Prdx6 was expressed in human epididymis and spermatozoa, and the protective role of Prdx6 in human spermatozoa was also reported. In this study, we demonstrate the potential role and mechanism of Prdx6 in human epididymis epithelial cells (HEECs).II. Methods and Results: Western blotting was used to measure expression levels of key proteins in the JAK / STAT signaling pathway. Digital gene expression analysis (DGE) was used to identify gene expression patterns in control HECs and in HECs after Prdx6-RNA interference (P6-RNAi). The DGE analysis identified 589 up-regulated and 314 down-regulated genes (including Prdx6) in Prdx6-RNAi (P6-RNAi) HEECs. Thirteen significantly different pathways were identified between the two groups, with the majority different expressed genes belonging to the CCL, CXCL, IL, and IFIT families. In particular, the expression levels of IL6, IL6ST, and eighteen IFN related genes were significantly increased in the condition of the down-regulated expression of Prdx6. Compared to control HEECs, the expression levels of JAK1, STAT1, phosphorylated JAK1 and STAT1 were significantly increased, while the expression levels of SOCS3 was significantly decreased in P6-RNAi HEECs. The Malondialdehyde (MDA) level and total antioxidant capacity in P6-RNAi HEECs were significantly increased and decreased compared to that of control, respectively. III. Conclusions: We speculated that knockdown of Prdx6 resulted in higher levels of ROS in HEECs, which in turn, activated the JAK1 / STAT1 signaling pathway induced by IL-6 receptor and IFN.


Sign in / Sign up

Export Citation Format

Share Document