Comparison of two culture media on morphokinetics and ploidy status of sibling embryos

Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Michael Urich ◽  
Muhammet Rasit Ugur ◽  
Fang Li ◽  
F. Nicholas Shamma ◽  
Ahmad Hammoud ◽  
...  

Summary To investigate the effects of culture media with different lactate concentrations on early embryonic development, data collected from our patients undergoing preimplantation genetic testing (PGT) were assessed using the EmbryoScope™ time-lapse culturing system. After intracytoplasmic sperm injection (ICSI), sibling oocytes were cultured in the same EmbryoScope (Vitrolife) slides including two different commercially available media. The patients with fewer than five mature oocytes were not included in the analyses. All embryos were hatched on day 3, and trophectoderm biopsies (n = 212) were performed accordingly. PGT for aneuploidy (PGT-A) on biopsied materials was carried out using next generation sequencing. Morphokinetic parameters, fertilization, irregular division, degeneration, blastulation, euploidy, and pregnancy rates of embryos cultured in LifeGlobal Global Total medium (LGGT) and Continuous Single Culture-NX Complete medium (CSCM-NXC) were compared. There were no differences observed in time to pronuclear fade, or in time spent as 2-cell (cc2) and 3-cell (s2), to 4-cell, 5-cell, morula and blastocyst stages (P > 0.05). Embryos reached the 2-cell (t2) and 3-cell (t3) stages significantly faster in LGGT (P < 0.05), whereas embryos grown in CSCM-NXC with lower lactate reached starting blastulation significantly sooner (P = 0.026). However, there were no statistical differences observed in fertilization, blastulation, degeneration, irregular division euploidy, and pregnancy rates between the two groups (P > 0.05). Even though pregnancy and fertilization rates did not indicate statistical differences, results are significant to provide better insight on potential roles of lactate in embryo development. These finding will advance the fundamental knowledge of human embryo development and assisted reproductive technologies.

Author(s):  
Василий Николаевич Попов ◽  
Роман Борисович Стукалин ◽  
Валерия Александровна Грибанова

В статье проводится анализ представленных на сегодня инвазивных и неинвазивных методов исследования преимплантационных эмбрионов. Показана эффективность преимплантационного генетического тестирования эмбрионов до переноса в полость матки. Также рассмотрены альтернативные менее инвазивные варианты изучения жизнеспособности эмбрионов, которые могли бы являться маркерами успешной имплантации. Проблема бесплодного брака с каждым годом становится все более и более значимой. Для части супружеских пар единственной возможностью рождения ребенка становится лечение методами вспомогательных репродуктивных технологий, эффективность которых остается на сегодняшний день не более 50 %. Особенно важным является поиск новых методик, позволяющих повысить результативность процедур экстракорпорального оплодотворения. В этом направлении крайне интересным является изучение неизвазивных методов оценки имплантационного потенциала эмбрионов. В анализе представлены работы по изучению протеома, метаболома и транскриптома эмбриона. Понимание молекулярного состава культуральных сред, в которых происходило развитие эмбриона до пятых суток культивирования, позволит глубже понять физиологию раннего развития, а также установить неивазивные критерии отбора эмбриона с лучшим имплантационным потенциалом и тем самым повысить эффективность проводимых программ вспомогательных репродуктивных технологий The article analyzes the currently presented invasive and non-invasive methods for studying preimplantation embryos. The efficiency of preimplantation genetic testing of embryos before transfer to the uterine cavity has been shown. Also considered are alternative less invasive options for studying the viability of embryos, which could be markers of successful implantation. The problem of sterile marriage is becoming more and more significant every year. For some married couples, the only possibility of having a child is treatment with methods of assisted reproductive technologies, the effectiveness of which remains at most 50% today. It is especially important to search for new techniques to improve the effectiveness of in vitro fertilization procedures. In this direction, it is extremely interesting to study non-invasive methods for assessing the implantation potential of embryos. The analysis presents works on the study of the proteome, metabolome and transcriptome of the embryo. Understanding the molecular composition of the culture media in which the development of the embryo took place until the fifth day of cultivation will allow a deeper understanding of the physiology of early development and also establish non-invasive criteria for the selection of embryos with the best implantation potential and thereby increase the efficiency of the programs of assisted reproductive technologies


Author(s):  
M. Sharan ◽  
S. Shalovylo ◽  
C. Grymak

An increasing interest in assisted reproductive technologies and their applications in biotechnology of animal reproduction is currently observed. The development of in vitro fertilization (IVF) has led to the emergence of new techniques as ICSI (Intracytoplasmic Sperm Iniection), 1MSI (Morphologically Selected Intracytoplasmic Sperm Iniection) and PGS (Pre–Implantation Genetic Screening). Recently a new technology TLMED (Time Lapse Monitoring of Embryo Development), which allows to observe dynamics of embryo development is being introduced to practice. The application of this technique allows to determine the morphokinetics parameters of normal embryos and to observe its development more accurately. Currently, there are four systems in the market based on this technique: Primo Vision (Vitrolife, Sweden), EEVA (Auxogyn, USA), Embryoscope (Vitrolife, Sweden), MIRI (Esco, Denmark), which conducting the morphokinetics analysis of embryos, which ensures selection of the best embryos and increases the effectiveness of in vitro fertilization. The first positive results of the use of system TLMED in agriculture biotechnology on the example of the Biomedical Research Center of the Warsaw University of Life Sciences predicts its introduction into the everyday practice of veterinary clinics. The aim of this paper is to present each system and review the existing information about the possible application of TLMED and the usefulness in animal reproductive biotechnology.


2020 ◽  
Author(s):  
Evelynne Paris-Oller ◽  
Sergio Navarro-Serna ◽  
Cristina Soriano-Úbeda ◽  
Jordana Sena Lopes ◽  
Carmen Matas ◽  
...  

Abstract Background: In vitro embryo production (IVP) and embryo transfer (ET) are two very common assisted reproductive technologies (ART) in human and cattle. However, in pig, the combination of either procedures, or even their use separately, is still considered suboptimal due to the low efficiency of IVP plus the difficulty of performing ET in the long and contorted uterus of the sow. In addition, the potential impact of these two ART on the health of the offspring is unknown. We investigated here if the use of a modified IVP system, with natural reproductive fluids (RF) as supplements to the culture media, combined with a minimally invasive surgery to perform ET, affects the output of the own IVP system as well as the reproductive performance of the mother and placental molecular traits.Results: The blastocyst rates obtained by both in vitro systems, conventional (C-IVP) and modified (RF-IVP), were similar. Pregnancy and farrowing rates were also similar. However, when compared to in vivo control (artificial insemination, AI), litter sizes of both IVP groups were lower, while placental efficiency was higher in AI than in RF-IVP. Gene expression studies revealed aberrant expression levels for PEG3 and LUM in placental tissue for C-IVP group when compared to AI, but not for RF-IVP group.Conclusions: The use of reproductive fluids as additives for the culture media in pig IVP does not improve reproductive performance of recipient mothers but could mitigate the impact of artificial procedures in the offspring.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
A Munuer. Puigvert ◽  
V. Montalv Pallès ◽  
J Mass. Hernáez ◽  
A García-Faura ◽  
B Marquè. López-Teijón ◽  
...  

Abstract Study question Have multinucleation and reverse cleavage any effect on embryo development and clinical outcomes on IVF treatments? Summary answer Embryos capable of repairing dysmorphisms and developing up to blastocyst stage keep intact their ability to become healthy babies. What is known already Time-lapse systems allow IVF laboratories to perform in-depth analysis of embryo development using the continuous monitoring tool. Some events that are impossible to detect with conventional morphologic evaluation, such as reverse cleavage or multinucleation, can be detected using time-lapse. Even though the low scientific evidence, the presence of these events is considered a negative factor when the embryo quality assessment is performed. However, it has been described the possibility that embryos have self-repair intrinsic methods. Study design, size, duration Retrospective study including data from 3,577 cycles with 21,274 embryos cultured until blastocyst stage using one-step culture media in time-lapse incubators (Embryoscope, Vitrolife) up to day 5/6 between 2014 and 2019. Participants/materials, setting, methods Three embryo groups were considered: Control group, embryos without multinucleation or reverse cleavage (CG; n = 16,897); Multinucleation group, embryos with at least one blastomere multinucleated on D + 2/3 (MNC; n = 3,879) and Reverse Cleavage group, embryos undergoing complete fusion of two blastomeres on D + 2/3 (RC; n = 498). Single embryo transfer was performed on blastocyst stage. Clinical outcome rates were compared between groups and analyzed by Chi-square test. Main results and the role of chance As published by other groups, the 2.3% of our embryos showed at least one reverse cleavage event and we observed multinucleation in the 18.2% of the embryos. Blastocyst rate of dysmorphism groups was significantly lower (p &lt; 0.05) than Control group (MNC=20.0%; RC = 27.7%; CG = 58.0%). Once transferred, MNC and RC evolutive embryos showed significantly lower pregnancy (MNC=47.9%; RC = 46.8%; CG = 60.8%; p &lt; 0.05) and clinical pregnancy rates (MNC=39.4%; RC = 40.4% CG = 50.6%; p &lt; 0.05) than the Control group (p &lt; 0.05). However, during the post-implantational development the negative effect of dysmorphisms disappears, reaching values of live birth rate comparable to the Control group (MNC=28.3%; RC = 31.9% CG = 33.8%; p = 0.17). These results prove the importance of blastocyst culture and the inherent capability of the embryos to overcome some abnormal dynamics as multinucleation and reverse cleavage. Thus, these embryos showing the poor-prognosis events can be considered for transfer or vitrify. Limitations, reasons for caution There is a wide difference on sample size between groups despite the fact that the statistical analysis considers that into account. There are some ongoing pregnancies in all groups. Wider implications of the findings: When analyzing the development of embryos undergoing reverse cleavage and multinucleation, we hypothesize that these embryos could be showing a self-correction mechanism for some type of error detected. Embryos capable of repairing and developing up to blastocyst stage keep intact their ability to become healthy babies. Trial registration number Not applicable


2020 ◽  
Vol 9 (2) ◽  
pp. 12 ◽  
Author(s):  
Rossella Tomaiuolo ◽  
Iolanda Veneruso ◽  
Federica Cariati ◽  
Valeria D’Argenio

During the last decade, the availability of next-generation sequencing-based approaches has revealed the presence of microbial communities in almost all the human body, including the reproductive tract. As for other body sites, this resident microbiota has been involved in the maintenance of a healthy status. As a consequence, alterations due to internal or external factors may lead to microbial dysbiosis and to the development of pathologies. Female reproductive microbiota has also been suggested to affect infertility, and it may play a key role in the success of assisted reproductive technologies, such as embryo implantation and pregnancy care. While the vaginal microbiota is well described, the uterine microbiota is underexplored. This could be due to technical issues, as the uterus is a low biomass environment. Here, we review the state of the art regarding the role of the female reproductive system microbiota in women’s health and human reproduction, highlighting its contribution to infertility.


2017 ◽  
Vol 29 (1) ◽  
pp. 190
Author(s):  
A. M. Raseona ◽  
O. A. Ajao ◽  
L. D. Nethengwe ◽  
L. R. Madzhie ◽  
T. L. Nedambale ◽  
...  

Preservation of semen is an important process to ensure that semen quality is sufficient for assisted reproductive technologies. The aim of this study was to evaluate the viability of bull semen collected by electro-ejaculation using commercial semen extender and 2 modified culture media stored at controlled RT (24°C) for 72 h. Two Nguni bulls were used for semen collection; after collection, the semen was evaluated macroscopically for volume, pH, and colour, and microscopically for sperm motility, viability, and morphology. Uncontaminated semen samples with progressive motility >70% and morphological defects <20% were pooled after collection before being aliquoted into 3 extenders, namely Triladyl, modified Ham’s F10, and TCM-199 culture media, at a dilution ratio of 1:4 and then stored at controlled RT (24°C). Sperm motility rate was analysed using the computer-aided sperm analyser after 0, 24, 48, and 72 h of storage. Sperm morphology and viability was performed after staining the sperm cells with spermac and nigrosine-eosin stain, respectively. The study was replicated 4 times and data were analysed using ANOVA. Triladyl had a higher sperm viability rate (41.3%) and total motility rate (96.3%) for 72 h (P < 0.01) compared with the 2 modified culture media, Ham’s F10 (26.5 and 86.8%) and TCM-199 (25.0 and 86.7%), respectively. However, Ham’s F10 had higher progressive motility rate (37.8%) as compared with the other extenders, TCM-199 (31.7%) and Triladyl (23.4). There was no significant difference (P > 0.05), in viability rate between Ham’s F10 (26.5%) and TCM-199 (25.0%). No significant difference (P > 0.05) in straight line velocity was observed for the three extenders. Furthermore, no significant difference was observed in total sperm abnormalities, except for reacted acrosomes and absent tails (P > 0.05), between the 2 Nguni bulls. Nguni semen can be preserved in Triladyl or modified Ham’s F10 and TCM-199 culture media stored at 24°C and stay viable for 72 h. Triladyl proved to be the best suitable extender of the 3 extenders, showing higher sperm viability and total motility rate as compared with Ham’s F10 and TCM-199 modified culture media.


2018 ◽  
Vol 36 (03/04) ◽  
pp. 211-220 ◽  
Author(s):  
Sneha Mani ◽  
Monica Mainigi

AbstractAssisted reproductive technologies (ARTs) lead to an increased risk for pregnancy complications, congenital abnormalities, and specific imprinting disorders. Epigenetic dysfunction is thought to be one common mechanism which may be affecting these outcomes. The timing of multiple ART interventions overlaps with developmental time periods that are particularly vulnerable to epigenetic change. In vitro embryo culture is known to impact blastocyst development, in vitro fertilization (IVF) success rates, as well as neonatal outcomes. Embryo culture, in contrast to other procedures involved in ART, is obligatory, and has the highest potential for causing alterations in epigenetic reprograming. In this review, we summarize progress that has been made in exploring the effects of embryo culture, culture media, and oxygen tension on epigenetic regulation in the developing embryo. In humans, it is difficult to isolate the role of embryo culture on epigenetic perturbations. Therefore, additional well-controlled animal studies isolating individual exposures are necessary to minimize the epigenetic effects of modifiable factors utilized during ART. Findings from these studies will likely not only improve IVF success rates but also reduce the risk of adverse perinatal outcomes.


2017 ◽  
Vol 242 (17) ◽  
pp. 1690-1700 ◽  
Author(s):  
Alexandria N Young ◽  
Georgette Moyle-Heyrman ◽  
J Julie Kim ◽  
Joanna E Burdette

Microphysiologic systems (MPS), including new organ-on-a-chip technologies, recapitulate tissue microenvironments by employing specially designed tissue or cell culturing techniques and microfluidic flow. Such systems are designed to incorporate physiologic factors that conventional 2D or even 3D systems cannot, such as the multicellular dynamics of a tissue–tissue interface or physical forces like fluid sheer stress. The female reproductive system is a series of interconnected organs that are necessary to produce eggs, support embryo development and female health, and impact the functioning of non-reproductive tissues throughout the body. Despite its importance, the human reproductive tract has received less attention than other organ systems, such as the liver and kidney, in terms of modeling with MPS. In this review, we discuss current gaps in the field and areas for technological advancement through the application of MPS. We explore current MPS research in female reproductive biology, including fertilization, pregnancy, and female reproductive tract diseases, with a focus on their clinical applications. Impact statement This review discusses existing microphysiologic systems technology that may be applied to study of the female reproductive tract, and those currently in development to specifically investigate gametes, fertilization, embryo development, pregnancy, and diseases of the female reproductive tract. We focus on the clinical applicability of these new technologies in fields such as assisted reproductive technologies, drug testing, disease diagnostics, and personalized medicine.


Sign in / Sign up

Export Citation Format

Share Document