Effect of high ambient temperature on protein and lipid deposition and energy utilization in growing pigs

2002 ◽  
Vol 75 (1) ◽  
pp. 85-96 ◽  
Author(s):  
L. Le Bellego ◽  
J. van Milgen ◽  
J. Noblet

AbstractThe effects of high ambient temperature (T) on protein (PD) and lipid deposition (LD) and energy utilization were studied on 36 Piétrain ✕ (Landrace ✕ Large White) barrows according to a factorial design including two temperatures (23ºC for thermoneutrality and 30ºC for the high temperature) and four feeding levels. One feeding level corresponded to the voluntary food intake (VFI) at each temperature. Expressed as proportion of VFI at 23ºC, the actual feeding levels were 1·00, 0·90, 0·80, 0·70 at 23ºC and 0·80, 0·73, 0·68 and 0·62 at 30ºC. Animals were offered a wheat, maize and soya-bean meal based diet containing 187 g crude protein per kg and 0·95 g ileal standardized digestible lysine per MJ of net energy. Pigs were housed individually and had free access to water. The experiment started at 24 kg live weight and animals were slaughtered at 65 kg live weight and their body composition was measured. Slaughter of nine control pigs at the beginning of the experiment allowed calculation of the composition of gain (nutrients and energy) according to the comparative slaughter technique. Reduction of metabolizable energy (ME) intake resulted in a reduced live-weight gain at each T: the maximum gain was 1052 g/ day in pigs offered food ad libitum at 23ºC and the minimum (760 g/day) at the lowest intake at 30ºC. Visceral organ mass was lower at 30ºC than at 23ºC but was not affected by feeding level within T. Growth responses were described as polynomial or broken-line functions of ME intake (linear-plateau for PD). Both the slope and the plateau were influenced by T. At 30ºC, PDmax (143 g/day) was reached at 22·8 MJ ME per day, while at 23ºC PDmax (165 g/day) was reached at 28·4 MJ ME per day. In both cases, PDmax was reached at 0·88 of VFI at this temperature. Also the marginal response of PD to ME intake before the breakpoint was affected by T (5·9 and 4·5 g PD per MJ ME at 23ºC and 30ºC, respectively). At identical high ME intake (e.g. 0·80 of VFI at 23ºC), PD was greater at 23ºC than at 30ºC. In contrast, severe food restriction reduced PD at thermoneutrality more than an identical food restriction obtained at high ambient T. The results indicate that heat stress has a direct negative effect on PD and affects the partitioning of energy gain between protein and fat deposition.

2006 ◽  
Vol 82 (6) ◽  
pp. 937-945 ◽  
Author(s):  
D. Renaudeau ◽  
B. Bocage ◽  
J. Noblet

AbstractTwenty-four castrated males were used to study the effect of breed (Large White v. Creole (LW v. CR)) and feeding level (0·70, 0·80, 0·90, and 1·00 ad libitum) on growth performance and protein deposition (PD) and lipid deposition (LD) between 30 and 60 kg in growing pigs under tropical climatic conditions; the CR pigs are raised in the Caribbean area and can be qualified as fat and slow growing pigs. Daily protein and amino acids supplies were calculated to be non-limiting for protein gain. Total PD and LD were measured according to the comparative slaughter technique. Digestibility coefficients of energy and nutrients were estimated over a 10-day period at 45 kg live weight. Neither the breed nor the feeding level influenced the apparent digestibility coefficients of dietary nutrients; only energy digestibility was increased at reduced feeding levels (P<0·05). Average daily gain increased linearly with the increase of metabolizable energy (ME) intake and the slope of the relationship was lower in CR than in LW pigs (30·4 v. 36·6 g per additional MJ ME). The food conversion ratio was not affected by feeding level but it was significantly higher in CR than in LW pigs (2·88 v. 2·36 kg /kg; P<0·001). Daily PD increased with ME intake according to a linear relationship in both breeds and the slope was significantly affected by breed (3·1 v. 4·2 g/MJ ME in CR and LW pigs, respectively; P<0·001). In contrast, the increase of LD and total energy retained with ME were higher in CR than in LW pigs (8·4 v. 6·4 g/MJ and 0·40 v. 0·36 MJ/ MJ ME, respectively; P<0·001).


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 452-453
Author(s):  
Daniel Mendoza-Cortés ◽  
Jorge L Ramos-Méndez ◽  
Adrián Félix-Bernal ◽  
Alfredo Estrada-Angulo ◽  
Manuel Franco ◽  
...  

Abstract Ninety young crossbreed bulls (approximately 25% Zebu breeding with the remainder represented by continental and British breeds in various proportions, initial weight=228.04±7.06 kg) were used in a 84-day feeding trial to assess the effects of treatments in feedlot cattle fed transition diets during high ambient temperatures. Treatments consisted of a steam-flaked corn-based diets (average 1.95 Mcal ENm/kg) supplemented with: 1) 20 mg monensin/kg diet (MON, Rumensin, Elanco Animal Health, Indianapolis, IN], and 2) 100 mg of blend of essential oils /kg diet plus 0.1 mg 25-hydroxy-vitamin-D3/kg diet (EO+HyD; CRINA® Ruminants and HyD®, DSM Nutritional Products, Basel, Switzerland). Both dry matter intake (DMI) and climatic variables were measured daily and the temperature humidity index (THI) was estimated. Daily maximal THI remained over 80 during the whole trial (avg. THI = 82.67). Cattle supplemented with EO+HyD increased average daily gain in 8.7% (1.446 vs. 1.320 kg/day, P &lt; 0.01), gain-to-fed ratio in 4.5% (0.199 vs. 0.190; P = 0.03), final weight in 10.05 kg (349.48 vs. 339.43; P = 0.04) and tended (P = 0.07) to shown greater dietary net energy (2.5%) and observed-to-expected dietary NE ratio (3%). Even when EO+HyD tended to increase (4.3%; P = 0.06) DM intake, intake pattern variation were not different (P = 0.38) between MON and EO+HyD (Figure 1). Then, difference in ADG and final BW between MON and EO+HyD was not only a reflection of difference in energy intake, was also caused by difference in efficiency of energy utilization during conditions of high ambient temperature (a reduction of 7% in the estimated increase of coefficient of maintenance by heat load). Results indicate that supplementation with a combination of essential oil blend plus 25-hydroxy-vitamin-D3 can have greater beneficial effects than supplemental monensin on daily weight gain, final weight and feed intake during initiation-transition phase of cattle raised under high ambient temperature.


1991 ◽  
Vol 52 (3) ◽  
pp. 535-543 ◽  
Author(s):  
S. A. Beech ◽  
R. Elliott ◽  
E. S. Batterham

ABSTRACTAn experiment was conducted to determine the effect of sucrose as an energy source on energy utilization and protein retention by growing pigs. Growing pigs (20 to 50 kg live weight) were restrictively fed (three times maintenance) either a control wheat-based diet (14 MJ digestible energy (DE) per kg), a sucrose-based diet (15 MJ DE per kg) or a wheat-based diet made i so-energetic with the sucrose diet by the addition of oil. Net energy (NE) content of the diet, energy utilization, protein and fat deposition were measured.Both the sucrose- and the iso-energetic wheat-based diets improved energy utilization and increased NE retention. They also increased fat deposition (P < 0·05) but had no effect on protein deposition (P > 0·05) compared with the wheat-based control. Increased DE utilization in the sucrose-based diet appeared due to (i) lower dietary fibre, (ii) a better balance of amino acids, or possibly due to (iii) increased fat synthesis due to sucrose metabolism. The lack of effect of sucrose on protein deposition appeared due to either (i) an increased amino acid requirement as a result of the higher NE content of the diet or (ii) preferential use of sucrose for fat deposition.


1975 ◽  
Vol 21 (3) ◽  
pp. 341-343 ◽  
Author(s):  
C. W. Holmes ◽  
N. D. Grace

SUMMARYTwo levels of feeding were offered at each of two air temperatures, 25° or 33°C, to pigs while they grew from 20 to 70 kg live weight; two pigs were subjected to each of the four treatments. Significant increases occurred in the urinary excretion of Ca and K by the two pigs fed on the higher level and exposed to 33°C. However these effects could not be related in an obvious way to the lameness which developed in the latter pigs.


1990 ◽  
Vol 64 (1) ◽  
pp. 81-94 ◽  
Author(s):  
E. S. Batterham ◽  
L. M. Andersen ◽  
D. R. Baigent ◽  
E. White

Diets were formulated using sugar, soya-bean meal and free amino acids to contain 0.1–0.8 lysine/MJ digestible energy (DE) and offered at three times maintenance to male and female pigs from 20 to 45 kg live weight. Growth responses and retentions of protein, fat, energy and lysine were assessed. Increasing the dietary lysine concentration resulted in significant (P < 0.001) linear and curvilinear increases in growth rates and decreases in food conversion ratios. There was only a small effect of lysine concentration on total energy retention, but a substantial effect on the partitioning of energy deposition, with increases in the rate of protein deposition and decreases in fat retention. There was no difference in the efficiency of protein deposition between male and female pigs but males responded more to higher lysine concentrations than females (estimated 0.93 and 0.74 g lysine/MJ DE for males and females respectively). Lysine concentration in the protein deposited by the pigs increased linearly and curvilinearly (P < 0.01) from 5.8 to 6.6 g lysine/16 g N with increasing dietary lysine concentration. There was a linear and quadratic response (P < 0.001) in retention of ileal digestible lysine, with the minimum retention of 0.16 occurring at 0.1 g lysine/MJ DE and increasing to a maximum retention of 0.73 at a dietary concentration of 0.47 g lysine/MJ DE. The efficiency of lysine retained/ileal digestible lysine intake was 0.86 and the endogenous lysine loss was estimated at 0.94 g/d.


2020 ◽  
Author(s):  
Christophe Gaillochet ◽  
Yogev Burko ◽  
Matthieu Pierre Platre ◽  
Ling Zhang ◽  
Jan Simura ◽  
...  

AbstractTemperature is one of the most impactful environmental factors to which plants adjust their growth and development. While the regulation of temperature signaling has been extensively investigated for the aerial part of plants, much less is known and understood about how roots sense and modulate their growth in response to fluctuating temperatures. Here we found that shoot and root growth responses to high ambient temperature are coordinated during early seedling development. A shoot signaling module that includes HY5, the phytochromes and the PIFs exerts a central function in coupling these growth responses and control auxin levels in the root. In addition to the HY5/PIF-dependent shoot module, a regulatory axis composed of auxin biosynthesis and auxin perception factors controls root responses to high ambient temperature. Together, our findings show that shoot and root developmental responses to temperature are tightly coupled during thermomorphogenesis and suggest that roots integrate energy signals with local hormonal inputs.


1974 ◽  
Vol 31 (2) ◽  
pp. 237-242 ◽  
Author(s):  
E. S. Batterham

1. Pigs from 20 to 47 kg live weight were given a wheat–safflower diet supplemented with either 0, 2 or 4 g L-lysine/kg either once daily or in six equal portions at intervals of 3 h.2. The addition of lysine at both levels significantly (P < 0.001) increased growth rate, feed conversion and lean content of the ham.3. Frequency of feeding had no effect on the response of pigs given the control diet.4. A significant interaction (P < 0.05) between frequency of feeding and lysine supplementation occurred for growth rate. Growth responses to the supplements of 2 and 4 g L-lysine/ kg with once-daily feeding were only 43 and 69% of those achieved under the frequent-feeding regimen.


1990 ◽  
Vol 51 (2) ◽  
pp. 343-355 ◽  
Author(s):  
S. A. Beech ◽  
R. Elliott ◽  
E. S. Batterham

ABSTRACTTwo experiments were conducted to determine the effect of including sucrose in diets on energy utilization by growing pigs. In the first experiment, the digestible energy (DE) content of sucrose was determined as 15·6 MJ/kg, indicating that gross energy was 0·96 digested. In the second experiment, iso-energetic diets were used to determine the effects of sucrose on growth and nutrient utilization. Sucrose was used to replace wheat gradually in four iso-energetic diets (15 MJ DE, 0·75 g lysine per MJ DE for pigs from 20 to 50 kg live weight and 15·1 MJ DE, 0·67 g lysine per MJ DE for pigs from 50 to 80 kg live weight). Pigs were fed ad libitum. Food intake (P < 0·01) and carcass daily gain (P < 0·05) increased with sucrose inclusion, independently of the level of sucrose in the diet. Food conversion ratio of male (boar) pigs on a carcass basis was unaffected by sucrose inclusion but increased with female pigs (P < 0·01). Killing-out proportion increased linearly with sucrose inclusion (P < 0·01). Sucrose inclusion improved energy retention (P < 0·05) and increased fat deposition (P < 0·05) but protein deposition was not affected. The weight of the full viscera (P < 0·01), empty digestive tract (P < 0·05), stomach (P < 0·01) and large intestine (P < 0·05) decreased with increasing sucrose inclusion. Sucrose did not affect blood triglycerides or cholesterol concentration (P > 0·05). Sucrose inclusion decreased the crude fibre and crude protein content of the diet and energy utilization was improved. Differences in gut fill indicated that sucrose-based diets were rapidly digested and absorbed.


Sign in / Sign up

Export Citation Format

Share Document