Behaviour of RNA under hydrothermal conditions and the origins of life

2004 ◽  
Vol 3 (4) ◽  
pp. 301-309 ◽  
Author(s):  
Kunio Kawamura

The RNA world hypothesis and the hydrothermal origin of life hypothesis are contradictory to each other. Although it is considered that RNA molecules are too labile to maintain life-like systems at high temperatures and there is extensive literature on nucleic acid hydrolysis, the stability and the chemical evolution of RNA have not been sufficiently analysed from the viewpoint of hydrothermal reactions. Based on our experimental data concerning the stability and the prebiotic formation of RNA at high temperatures, two different aspects seem to be important for evaluating whether RNA molecules are too labile. First, the stability of RNA molecules should be evaluated from the comparison of the rate of formation and the rate of degradation of RNA in open systems. Our prebiotic reaction models of phosphodiester bond formation suggest that at high temperatures the accumulation of RNA may be possible. However, an RNA world entirely consisting of RNA molecules is unlikely to occur because the biologically important interactions are not effective for the bare RNA molecules at high temperatures. Second, since enzymes presently mediate most biological reactions, evaluation of the accumulation of RNA should be based on the comparison between the enzymatic and non-enzymatic reaction rates. Hence, the evaluation of the primitive enzymatic reaction rates at high temperatures has been attempted. There is a large difference between the present enzymatic reaction rates at 25–90 °C and the non-enzymatic reaction rates at high temperatures of 200–300 °C. It is thus possible that prebiotic enzyme-like assemblies could have facilitated the accumulation of RNA molecules at hydrothermal vent temperatures.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3567
Author(s):  
Faiza Faiza ◽  
Abraiz Khattak ◽  
Safi Ullah Butt ◽  
Kashif Imran ◽  
Abasin Ulasyar ◽  
...  

Silicone rubber is a promising insulating material that has been performing well for different insulating and dielectric applications. However, in outdoor applications, environmental stresses cause structural and surface degradations that diminish its insulating properties. This effect of degradation can be reduced with the addition of a suitable filler to the polymer chains. For the investigation of structural changes and hydrophobicity four different systems were fabricated, including neat silicone rubber, a micro composite (with 15% micro-silica filler), and nanocomposites (with 2.5% and 5% nanosilica filler) by subjecting them to various hydrothermal conditions. In general, remarkable results were obtained by the addition of fillers. However, nanocomposites showed the best resistance against the applied stresses. In comparison to neat silicone rubber, the stability of the structure and hydrophobic behavior was better for micro-silica, which was further enhanced in the case of nanocomposites. The inclusion of 5% nanosilica showed the best results before and after applying aging conditions.


Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 821
Author(s):  
Marek Petráš ◽  
Ivana Králová Lesná ◽  
Jana Dáňová ◽  
Alexander M. Čelko

Vaccination as an important tool in the fight against infections has been suggested as a possible trigger of autoimmunity over the last decades. To confirm or refute this assumption, a Meta-analysis of Autoimmune Disorders Association With Immunization (MADAWI) was conducted. Included in the meta-analysis were a total of 144 studies published in 1968–2019 that were available in six databases and identified by an extensive literature search conducted on 30 November 2019. The risk of bias classification of the studies was performed using the Newcastle–Ottawa Quality Assessment Scale. The strength of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation. While our primary analysis was conducted in terms of measures of association employed in studies with a low risk of bias, the robustness of the MADAWI outcome was tested using measures independent of each study risk of bias. Additionally, subgroup analyses were performed to determine the stability of the outcome. The pooled association of 0.99 (95% confidence interval, 0.97–1.02), based on a total of 364 published estimates, confirmed an equivalent occurrence of autoimmune disorders in vaccinated and unvaccinated persons. The same level of association reported by studies independently of the risk of bias was supported by a sufficient number of studies, and no serious limitation, inconsistency, indirectness, imprecision, and publication bias. A sensitivity analysis did not reveal any discrepancy in the primary result. Current common vaccination is not the cause of any of the examined autoimmune disorders in the medium and long terms.


2020 ◽  
Vol 13 ◽  
pp. 18
Author(s):  
P. Demetriou

Nuclear reaction rates play a crucial role in nuclear astrophysics. In the last decades there has been an enormous effort to measure reaction cross sections and extensive experimental databases have been compiled as a result. In spite of these efforts, most nuclear reaction network calculations still have to rely on theoretical predic- tions of experimentally unknown rates. In particular, in astrophysics applications such as the s-, r- and p-process nucleosynthesis involving a large number of nuclei and nuclear reactions (thousands). Moreover, most of the ingredients of the cal- culations of reaction rates have to be extrapolated to energy and/or mass regions that cannot be explored experimentally. For this reason it is important to develop global microscopic or semi-microscopic models of nuclear properties that give an accurate description of existing data and are reliable for predictions far away from the stability line. The need for more microscopic input parameters has led to new devel- opments within the Hartree-Fock-Bogoliubov method, some of which are presented in this paper.


Author(s):  
William Peeples ◽  
Michael K. Rosen

AbstractBiomolecular condensates concentrate macromolecules into discrete cellular foci without an encapsulating membrane. Condensates are often presumed to increase enzymatic reaction rates through increased concentrations of enzymes and substrates (mass action), although this idea has not been widely tested and other mechanisms of modulation are possible. Here we describe a synthetic system where the SUMOylation enzyme cascade is recruited into engineered condensates generated by liquid-liquid phase separation of multidomain scaffolding proteins. SUMOylation rates can be increased up to 36-fold in these droplets compared to the surrounding bulk, depending on substrate KM. This dependency produces substantial specificity among different substrates. Analyses of reactions above and below the phase separation threshold lead to a quantitative model in which reactions in condensates are accelerated by mass action and by changes in substrate KM, likely due to scaffold-induced molecular organization. Thus, condensates can modulate reaction rates both by concentrating molecules and by physically organizing them.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Maikel Acosta-Zaldivar ◽  
Wanjun Qi ◽  
Ning-Ning Liu ◽  
Joann Diray-Arce ◽  
Louise A. Walker ◽  
...  

The Candida albicans high-affinity phosphate transporter Pho84 is required for normal Target of Rapamycin signaling, oxidative stress resistance and virulence of this fungal pathogen. It also contributes to C. albicans’ tolerance of two antifungal drug classes, polyenes and echinocandins. Echinocandins inhibit biosynthesis of a major cell wall component, beta-1,3-glucan. Cells lacking Pho84 were hypersensitive to other forms of cell wall stress beyond echinocandin exposure, while their cell wall integrity signaling response was weak. Metabolomics experiments showed that levels of phosphoric intermediates, including nucleotides like ATP and nucleotide sugars, were low in pho84 mutant compared to wild type cells recovering from phosphate starvation. Non-phosphoric precursors like nucleobases and nucleosides were elevated. Outer cell wall phosphomannan biosynthesis requires a nucleotide sugar,GDP-mannose. The nucleotide sugar UDP-glucose is the substrate of enzymes that synthesize two major structural cell wall polysaccharides, beta-1,3- and beta-1,6-glucan. Another nucleotide sugar, UDP-N-acetylglucosamine, is the substrate of chitin synthases which produce a stabilizing component of the intercellular septum and of lateral cell walls. Lack of Pho84 activity, and phosphate starvation, potentiated pharmacological or genetic perturbation of these enzymes. Our model is that low substrate concentrations of beta-D-glucan- and chitin synthases diminish enzymatic reaction rates and potentiate pharmacologic inhibitors to decrease the yield of their cell wall-stabilizing products. Phosphate import is not conserved between fungal and human cells, and humans do not synthesize beta-D-glucans or chitin. Hence inhibiting these processes simultaneously could yield potent antifungal effects with low toxicity to humans.


Author(s):  
Ivelin Pantchev ◽  
Goritsa Rakleova ◽  
Atanas Atanassov

Abstract The research community is deeply convinced that RNA is unstable in the environment. Its roots rise from numerous failed attempts to isolate functional cellular RNA molecules. Further support had originated from the fast turnover of RNA in the cells. The situation changed recently with the discovery that externally applied dsRNA can produce targeted gene silencing in plant-feeding insects. First results have demonstrated that external dsRNA can successfully pass the insect gastrointestinal tract and reach its final destination within the body cells. This was somewhat unexpected and sparked new interest in RNA stability in the environment and its fate in the insect organism. In this brief review we make an attempt to summarize current knowledge and to propose a model of how dsRNA can perform its function under these settings.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1064-1065
Author(s):  
K. Lester ◽  
A.K. Datye

Combustion of natural gas for power generation leads to NOx formation due to the high temperatures encountered. Catalytic combustion allows the entire combustion process to be completed at temperatures where NOx formation can be avoided. The catalyst of choice is supported PdO. As temperature is increased, PdO decomposes to Pd metal with profound effects on catalyst reactivity. Persistent hysteresis in reaction rates have been related to the decomposition of PdO into Pd and its reformation.Understanding and controlling the phase transformations, and the resulting activity variations, is of enormous importance for high temperature combustion catalysts where predictable catalyst activity is necessary for stable operation. Farrauto et al. studied the phase transformations of PdO to Pd using thermogravimetric analysis (TGA). They concluded that while PdO decomposes to Pd at high temperatures during the heating cycle, upon cooling the Pd does not transform to PdO till the temperature drops by several hundred degrees.


2003 ◽  
Vol 13 (06) ◽  
pp. 1529-1543 ◽  
Author(s):  
Juncheng Wei ◽  
Matthias Winter

We consider a nonlocal eigenvalue problem which arises in the study of stability of spike solutions for reaction–diffusion systems with fractional reaction rates such as the Sel'kov model, the Gray–Scott system, the hypercycle of Eigen and Schuster, angiogenesis, and the generalized Gierer–Meinhardt system. We give some sufficient and explicit conditions for stability by studying the corresponding nonlocal eigenvalue problem in a new range of parameters.


2000 ◽  
Vol 652 ◽  
Author(s):  
A. C. Lewis ◽  
A. B. Mann ◽  
D. van Heerden ◽  
D. Josell ◽  
T. P. Weihs

ABSTRACTLaminated composites with polycrystalline layers typically break down at high temperatures through grain boundary grooving and the pinch-off of individual layers. Such materials, when exposed to high temperatures, develop grooves where grain boundaries meet the interfaces between layers. The depths of the grooves are controlled by the ratios of grain boundary and interfacial free energies, γgb/γint. Depending on the dimensions of the grains, these grooves can extend through the entire layer, causing pinch-off at the grain boundary. This pinch-off destroys the layering and eventually leads to a gross coarsening of the microstructure. Because microstructural stability is critical to performance for most applications, the ability to understand and predict the stability of microlaminates is a necessary tool. An existing model of this capillarity-driven breakdown requires the interfacial free energies, γgb and γint, as input parameters. Both biaxial and uniaxial zero creep tests have been used in conjunction with transmission electron microscopy to measure these interfacial energies in Ag/Ni and Nb/Nb5Si3 microlaminates.


Sign in / Sign up

Export Citation Format

Share Document