Exploring the use of residues from the invasive Acacia sp. for weed control

2018 ◽  
Vol 35 (1) ◽  
pp. 26-37 ◽  
Author(s):  
Pablo Souza-Alonso ◽  
Carolina G. Puig ◽  
Nuria Pedrol ◽  
Helena Freitas ◽  
Susana Rodríguez-Echeverría ◽  
...  

AbstractA sustainable practice for weed control and crop protection is the incorporation of green manures with phytotoxic potential. It is gaining attention as a way to reduce the use of synthetic herbicides in agriculture and so pot experiments and field trials were conducted to explore the possible use of residues of Acacia species to alleviate weed emergence. We assessed, under greenhouse conditions, the herbicidal effect of phytotoxic manures from Acacia dealbata and Acacia longifolia applied to soil at different doses (1.5 and 3% w/w) on maize growth, some accompanying weeds, and the physiological profile of soil microbes. Applied at a higher dose, A. dealbata residues reduced the emergence of dicotyledons in the short-term (P < 0.05) and, after 30 days, there was a decrease in total weed emergence (P < 0.005) and a mild effect on weed composition, while total weed biomass remained unaffected. Regardless of the inclusion of Acacia residues, the physiological profile of the soil bacterial community did not show significant alterations. Additionally, we tested A. dealbata residues as a mulch or a green manure at the field scale. Although the effects of manures were site-dependent and affected monocot and dicot weeds differentially, dicots were more sensitive. The herbicide potential of acacia residues was only evident for dicots at sites with low-weed density in the seed bank. Nevertheless, due to the absence of phytotoxic effects on maize and minor modifications in the functional profile of bacterial communities, residues of acacia could be used as a complementary tool used together with other practices to reduce the reliance on synthetic herbicides in maize-based cropping systems.

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1469
Author(s):  
Silke Deketelaere ◽  
Katrijn Spiessens ◽  
Sabien Pollet ◽  
Lien Tyvaert ◽  
Luc De Rooster ◽  
...  

Verticillium wilt is one of the most important diseases of cauliflower and can lead to serious economic losses. In this study, two complementary strategies were explored to employ the antagonistic capacity of Verticillium isaacii towards Verticillium wilt of cauliflower. The first strategy focused on introducing V. isaacii Vt305 by artificial inoculation of cauliflower plantlets at the nursery stage. Two inoculum types (spores and microsclerotia of V. isaacii Vt305) and different concentrations of microsclerotia were tested in greenhouse and field trials. Seed treatment with 500 microsclerotia seed−1 led to a satisfying biocontrol level of Verticillium wilt. In addition, the PHYTO-DRIP® system was successful in delivering the microsclerotia to cauliflower seeds. The second strategy relied on the stimulation of the natural V. isaacii populations by rotating cauliflower with green manures and potato. Four green manure crops and potato were tested during multiple field experiments. Although these crops seemed to stimulate the V. isaacii soil population, this increase did not result in a control effect on Verticillium wilt of cauliflower in the short term. Importantly, our results indicate that the use of green manures is compatible with the application of V. isaacii Vt305 as biocontrol agent of Verticillium wilt in cauliflower.


1998 ◽  
Vol 12 (4) ◽  
pp. 712-718 ◽  
Author(s):  
Charlotte V. Eberlein ◽  
Matthew J. Morra ◽  
Mary J. Guttieri ◽  
Paul D. Brown ◽  
Jack Brown

Winter rape (Brassica napusL.) green manures have shown potential for erosion control and suppression of weeds and other pests in potato cropping systems. However, little information on residue cover, biomass production, glucosinolate concentration, and glucosinolate production with winter rape grown as a green manure is available. In field trials in southern Idaho, ‘Aspen,’ ‘Bridger,’ ‘Cascade,’ ‘Dwarf Essex,’ and ‘Humus’ winter rape were planted in mid-August and incorporated the following spring in late April or early May. All five cultivars provided > 80% fall, winter, and early spring residue cover. Winter rape dry weight just before incorporation was 2,880 to 4,462 kg/ha in 1994 and 5,438 to 7,837 kg/ha in 1995. The major glucosinolate in roots of all five cultivars was phenylethyl glucosinolate; the major glucosinolates in shoots were 4-pentenyl, 2-hydroxybutenyl, 3-butenyl, and 2-hydroxypentenyl glucosinolate. Glucosinolate concentrations varied between years, but concentrations were higher in Dwarf Essex and Humus than in Aspen both years. Glucosinolate production per hectare also was highest in Dwarf Essex and Humus and lowest in Aspen. Dwarf Essex and Humus produced higher amounts of isothiocyanate (ITC) and oxazolidinethione (OZT)-producing glucosinolates than Aspen, Bridger, or Cascade, and therefore may be better biofumigants.


2011 ◽  
Vol 149 (6) ◽  
pp. 679-700 ◽  
Author(s):  
N. COLBACH ◽  
B. CHAUVEL ◽  
H. DARMENCY ◽  
Y. TRICAULT

SUMMARYCropping systems contain a diverse multi-species weed flora including several species that cross-breed with and/or descend from crops, including weed beet (Beta vulgarisssp.vulgaris). The effects of cropping systems on this weed flora are complex because of their large range of variation and their numerous interactions with climate and soil conditions. In order to study and quantify the long-term effects of cropping system components (crop succession and cultural techniques) on weed population dynamics, a biophysical process-based model called GENESYS-Beet has previously been developed for weed beet. In the present paper, the model was modified to remove the crop–weed connection and employed to identify and rank the weed life-traits as a function of their effect on weed emergence timing and density as well as on weed densities at plant, adult and seed bank stages, using a global sensitivity analysis to model parameters. A similar method has already been used with the complete GENESYS-Beet model (i.e. including the crop–weed connection) based on Monte Carlo simulations with simultaneous randomization of all life-trait parameters and run in three cropping systems differing in their risk of infestation by weed beet. Simulated weed emergence timing and density, as well as surviving plant, adult and seed bank densities, were then analysed with regression models as a function of model parameters to rank life-cycle processes and related life-traits and quantify their effects. The comparison of the present, crop-independent results to those of the previous, crop-dependent study showed that the crop-relative weed beet can be considered as a typical crop-independent spring weed as long as no traits conferring a selective advantage are inherited and in rotations where crops favouring weed emergence and reproduction are frequent. In such rotations, advice for controlling the crop-relative and the crop-independent weed is more or less identical. The rarer these favourable crops, the more important pre-emergence processes become for the crop-independent weed; management advice should thus focus more on seed bank survival and seedling emergence. For the crop-relative, post-emergence processes become dominant because of the increasing necessity for a new population founding event; management advice should mostly concern the avoidance of crop bolters. In both studies, the key parameters were more or less the same, i.e. those determining the timing and success of growth, development, seed maturation and the physiological end of seed production. Timing parameters were usually more important than success parameters, showing for instance that optimal timing of weed management operations is often more important than its exact efficacy. Comparison with previous sensitivity analyses carried out for autumn-emerging weed species showed that some of the present conclusions are probably specific to spring-emerging weed species only. For autumn-emerging species, pre-emergence traits would be more important. In the rotations with frequent favourable crops and insufficient weed control, interactions between traits were small, indicating that diverse populations and species with contrasting traits could prosper, potentially leading to a diverse multi-species weed flora. Conversely, when favourable crops were rare and weed control optimal, traits had little impact individually, indicating that a small number of optimal combinations of traits would be successful, thus limiting both intra- and inter-specific variability.


2021 ◽  
Vol 38 (1) ◽  
pp. 61-67
Author(s):  
A.I. Woghiren ◽  
R. O., Awodoyin ◽  
C.I. Antiabong ◽  
E.N. Ngonadi ◽  
O.R. Jeminiwa ◽  
...  

Weed interference is a major constraint in maize cultivation. Living mulch as an alternative weed control strategy has been established to be environmentally safe but has not been widely used in maize cultivation. The aim of this research was to evaluate the weed management attributes of Vigna unguiculata in maize cropping. A field study was carried out in the crop garden of the Department of Crop Protection and Environmental Biology, University of Ibadan, Nigeria. The treatments were maize interplanted with Cowpea at 20,000 (M1), 30,000 (M2), 40,000 (M3) plants/hectare, hoe weeding (M4), weedy check (M5) and Primextra-2.5 L/ha (M6). The treatments were arranged in randomized complete block design, each replicated four times. Weed Dry Weight (WDW) and Weed Control Efficiency–WCE (%) were calculated following standardized methods. Data were analysed using descriptive statistics and ANOVA at α0.05. The treatment plots were dominated by weed species in the Asteraceae, Fabaceae and Poaceae families. The M5 accounted for the highest WDW (126.30 g). The WCE was highest in M3 (94.8%) and least in M5 (66.4%). Maize and cowpea interplant at 40,000 plants/hectare suppressed weed. Hence, cowpea is an ideal weed suppressant and can be inter-planted as a cover crop in maize cropping systems.


1994 ◽  
Vol 9 (4) ◽  
pp. 162-170 ◽  
Author(s):  
Larry D. King

AbstractIn a previous study of reduced chemical cropping systems (N from legumes; chisel plow and disk tillage; cultivation for weed control) in the southeastern U.S., corn and wheat yields were less than half those obtained with recommended practices. The following practices were studied as possible ways to improve yields in the reduced chemical systems: 1) conventional tillage (chisel plowing and disking), inorganic Nat 70 or 140 kg/ha, and either cultivation or herbicides; 2) early versus late plow-down of clover green manures; 3) supplemental inorganic N fertilizer on corn and wheat in rotations relying on clover green manures for N; and 4) nicosulfuron herbicide banded on corn.Yield of soybean in the rotations was not affected by any of these practices. With herbicides and fertilizer N at 140 kg/ha, continuous corn yields with no-till and conventional tillage were equal in 1990 and 1992, but no-till yield was 30% higher in 1991. When cultivation was used for weed control in the conventional tillage treatment, corn yield was similar to that of no-till with herbicide in the one year when rain was plentiful (yield 6000 kg/ha). However, in 2 of 4 dry years, yields (<2600 kg/ha) were higher with no-till. Clover biomass consistently increased by between 700 and 3500 kg/ha when plow-down was delayed from mid-April to early or mid-May (13 to 26 days). However, biomass N content increased significantly (by between 35 and 90 kg/ha) in only 2 of 5 years. Corn yields were affected in only 2 of 12 possible comparisons. In these cases, delayed clover plow-down reduced yield by about 50%. Supplementing corn with 45 kg N/ha and banding nicosulfuron increased yields, but only to between 62 and 84% of yields with recommended practices. Supplementing wheat with 45 kg N/ha increased yields by half, but only to between 40 and 60% of the yields with 90 kg N/ha.


2019 ◽  
pp. 61-67

Recognition of high yielding and nitrogen (N) fixing groundnut genotypes and desegregating them in the cereal-based cropping systems common in savannah regions will enhance food security and reduce the need for high N fertilizers hence, minimize the high cost and associated environmental consequences. Field trials were conducted during the 2015 growing season at the Research Farms of Bayero University Kano (BUK) and Institute for Agricultural Research (IAR), Ahmadu Bello University, Samaru-Zaria to assess the yield potential and Biolog- ical N fixation in 15 groundnut genotypes (ICG 4729, ICGV-IS 07823, ICGV-IS 07893, ICGV-IS 07908, ICGV- SM 07539, ICGV- SM 07599, ICGV-IS 09926, ICGV-IS 09932, ICGV-IS 09992, ICGV-IS 09994, SAMNUT-21, SAMNUT-22, SAMNUT-25, KAMPALA and KWANKWAS). The groundnut genotypes and reference Maize crop (SAMMAZ 29) were planted in a randomized complete block design in three replications. N difference method was used to estimate the amount of N fixed. The parameters determined were the number of nodules, nod- ule dry weight, shoot and root dry weights, pod, and haulm yield as well as N fixation. The nodule dry weight, BNF, haulm, and pod yield were statistically significant (P<0.01) concerning genotype and location. Similarly, their interac- tion effect was also highly significant. ICGV-IS 09926 recorded the highest nod- ule dry weight of 2.07mg /plant across the locations while ICGV-IS 09932 had the highest BNF value of 140.27Kg/ha. Additionally, KAMPALA had the high- est haulm yield, while ICGV-IS 07893 had the highest pod yield across the loca- tions with a significant interaction effect. The result shows that ICGV-IS 07893 and ICGV-IS 09932, as well as ICGV-IS 09994 and SAMNUT – 22, were the best genotypes concerning BNF, haulm and pod yield in the Northern Guinea and Sudan Savannahs of Nigeria respectively with the potential for a corresponding beneficial effect.


2021 ◽  
pp. 1-28
Author(s):  
Nicholas T. Basinger ◽  
Nicholas S. Hill

Abstract With the increasing focus on herbicide-resistant weeds and the lack of introduction of new modes of action, many producers have turned to annual cover crops as a tool for reducing weed populations. Recent studies have suggested that perennial cover crops such as white clover could be used as living mulch. However, white clover is slow to establish and is susceptible to competition from winter weeds. Therefore, the objective of this study was to determine clover tolerance and weed control in established stands of white clover to several herbicides. Studies were conducted in the fall and winter of 2018 to 2019 and 2019 to 2020 at the J. Phil Campbell Research and Education Center in Watkinsville, GA, and the Southeast Georgia Research and Education Center in Midville, GA. POST applications of imazethapyr, bentazon, or flumetsulam at low and high rates, or in combination with 2,4-D and 2,4-DB, were applied when clover reached 2 to 3 trifoliate stage. Six weeks after the initial POST application, a sequential application of bentazon and flumetsulam individually, and combinations of 2,4-D, 2,4-DB, and flumetsulam were applied over designated plots. Clover biomass was similar across all treatments except where it was reduced by sequential applications of 2,4-D + 2,4-DB + flumetsulam in the 2019 to 2020 season indicating that most treatments were safe for use on establishing living mulch clover. A single application of flumetsulam at the low rate or a single application of 2,4-D + 2,4-DB provided the greatest control of all weed species while minimizing clover injury when compared to the non-treated check. These herbicide options allow for control of problematic winter weeds during clover establishment, maximizing clover biomass and limiting canopy gaps that would allow for summer weed emergence.


2021 ◽  
Vol 269 ◽  
pp. 108175
Author(s):  
Tilahun Amede ◽  
Gizachew Legesse ◽  
Getachew Agegnehu ◽  
Tadesse Gashaw ◽  
Tulu Degefu ◽  
...  

2021 ◽  
Author(s):  
María Martínez-Mena ◽  
Carolina Boix-Fayos ◽  
Efrain Carrillo-López ◽  
Elvira Díaz-Pereira ◽  
Raúl Zornoza ◽  
...  

Abstract Purpose Diversification practices such as intercropping in woody cropping systems have recently been proposed as a promising management strategy for addressing problems related to soil degradation, climate change mitigation and food security. In this study, we assess the impact of several diversification practices in different management regimes on the main carbon fluxes regulating the soil carbon balance under semiarid Mediterranean conditions. Methods The study was conducted in two nearby cropping systems: (i) a low input rainfed almond (Prunus dulcis Mill.) orchard cultivated on terraces and (ii) a levelled intensively irrigated mandarin (Citrus reticulata Blanco) orchard with a street-ridge morphology. The almond trees were intercropped with Capparis spinosa or with Thymus hyemalis While the mandarin trees were intercropped with a mixture of barley and vetch followed by fava bean. Changes caused by crop diversifications on C inputs into the soil and C outputs from the soil were estimated. Results Crop diversification did not affect soil organic carbon stocks but did affect the carbon inputs and outputs regulating the soil carbon balance of above Mediterranean agroecosystems. Crop diversification with perennials in the low-input rainfed woody crop system significantly improved the annual soil C balance in the short-term. However, crop diversification with annual species in the intensively managed woody crop system had not effect on the annual soil C balance. Conclusions Our results highlight the potential of intercropping with perennials in rainfed woody crop systems for climate change mitigation through soil carbon sequestration.


2015 ◽  
Vol 4 (3) ◽  
pp. 89 ◽  
Author(s):  
Heikki M. T. Hokkanen ◽  
Ingeborg Menzler-Hokkanen ◽  
Marja-Leena Lahdenpera

<p>Targeted precision biocontrol and improved pollination were studied Europe-wide in the EU ERA-NET CORE ORGANIC 2 project BICOPOLL (Biocontrol and Pollination). A case study was conducted on the management of strawberry grey mold <em>Botrytis cinerea</em>, with the biocontrol fungus, <em>Gliocladium catenulatum</em>, vectored by honey bees or bumble bees. A joint field trial carried out in five countries targeted strawberry cultivations in open field, and included four treatments: untreated control, chemical fungicide, entomovectored biocontrol, and chemical and biocontrol combined. In organic fields, no pesticide treatments were included. The proportion of moldy berries, and/or the marketable yield of healthy berries were recorded from each treatment, along with other parameters of local interest. A pilot study was started in Finland in 2006, and, by 2012, large commercial farms were using entomovectoring. In 2012, field trials were started in Estonia and in Italy, and in 2013-14, these experiments were expanded to Slovenia and Turkey. In total, 26 field tests were conducted using entomovectoring and <em>Gliocladium catenulatum</em> (Prestop<sup>®</sup> Mix) on strawberry, with five additional trials on raspberry. Efficacy results have been excellent throughout the field studies. The results show crop protection equalling or exceeding that provided by a full chemical fungicide program, under all weather conditions, and over a wide geographical range (from Finland to Turkey). Under heavy disease pressure, entomovectoring provided on average a 47% disease reduction, which was the same as multiple fungicide sprays. Under light disease pressure, biocontrol decreased grey mold by an average of 66%, which was greater than fungicide sprays. The concept has proven to be effective on strawberries, raspberries, pears, apples, blueberries, cherries, and grapes. A conservative estimate for Finland is that over 500 ha of strawberry cultivation currently use the technique (≈15% of the strawberry growing area). To make full use of the entomovectoring technique, organic berry and fruit growers are encouraged to (i) keep bees, or to hire the service from local beekeepers for entomovectoring; and (ii) manage vegetation within and around the target crop to support the activity of bees and other pollinators, which can help to disseminate the beneficial microbial populations within the crop. Beekeepers are encouraged to (i) market pollination and biocontrol services to fruit and berry growers, and (ii) ensure that all operations are effective in mananging bees and their microbe dissemination activity. Biocontrol product manufacturers are encouraged to further develop products and their formulations specifically for entomovectoring, because current formulations are suboptimal as they are initially optimized for other uses (e.g., mixing into the soil).</p>


Sign in / Sign up

Export Citation Format

Share Document