scholarly journals Agile multi-beam front-end for 5G mm-wave measurements

Author(s):  
Steffen Spira ◽  
Kurt Blau ◽  
Reiner Thomä ◽  
Matthias A. Hein

Abstract The 5th generation new radio (5G NR) standards create both enormous challenges and potential to address the spatio-spectral-temporal agility of wireless transmission. In the framework of a research unit at TU Ilmenau, various concepts were studied, including both approaches toward integrated circuits and distributed receiver front-ends (FEs). We report here on the latter approach, aiming at the proof-of-principle of the constituting FEs suitable for later modular extension. A millimeter-wave agile multi-beam FE with an integrated 4 by 1 antenna array for 5G wireless communications was designed, manufactured, and verified by measurements. The polarization is continuously electronically adjustable and the directions of signal reception are steerable by setting digital phase shifters. On purpose, these functions were realized by analog circuits, and digital signal processing was not applied. The agile polarization is created inside the analog, real-time capable FE in a novel manner and any external circuitry is omitted. The microstrip patch antenna array integrated into this module necessitated elaborate measurements within the scope of FE characterization, as the analog circuit and antenna form a single entity and cannot be assessed separately. Link measurements with broadband signals were successfully performed and analyzed in detail to determine the error vector magnitude contributions of the FE.

2018 ◽  
Vol 9 (1) ◽  
pp. 47 ◽  
Author(s):  
Befekadu Mengesha ◽  
Pablo Torres-Ferrera ◽  
Roberto Gaudino

The 3rd Generation Partnership Project (3GPP) is in the process of developing 5th generation (5G) radio access technology, the so-called new radio (NR). The aim is to achieve the performance requirements forIMT-2020 radio interface technology. In this paper, we focus on the analysis of the transmission of 5G NR uplink physical channels, such as physical uplink shared channel (PUSCH) and physical uplink control channel (PUCCH), dedicated for data and control channels, respectively, as specified in the 3GPP standard, using digital signal processing (DSP)-assisted frequency division multiple access (FDMA) and time division multiple access (TDMA) channel aggregation techniques on an analogue radio-over-fiber (A-RoF) architecture. We verified that there is ~34% spectral efficiency gain and lower error vector magnitude (EVM) achieved using the TDMA technique.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yuehai Wang ◽  
Yongzheng Yan ◽  
Qinyong Wang

Fault diagnosis for analog circuit has become a prominent factor in improving the reliability of integrated circuit due to its irreplaceability in modern integrated circuits. In fact fault diagnosis based on intelligent algorithms has become a popular research topic as efficient feature extraction and selection are a critical and intricate task in analog fault diagnosis. Further, it is extremely important to propose some general guidelines for the optimal feature extraction and selection. In this paper, based on wavelet analysis, we will study the problems of mother wavelets selection, number of decomposition levels, and candidate coefficients selection by using a four-op-amp biquad filter circuit. After conducting several comparative experiments, some general guidelines for feature extraction for this type of analog circuits fault diagnosis are derived.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Hiroyuki Nakata ◽  
Kenro Nozaki ◽  
Yuhei Oki ◽  
Keisuke Hosokawa ◽  
Kumiko K. Hashimoto ◽  
...  

AbstractHigh-frequency Doppler (HFD) sounding is one of the major remote sensing techniques used for monitoring the ionosphere. Conventional systems for HFDs mainly utilize analog circuits. However, existing analog systems have become difficult to maintain as the number of people capable of working with analog circuits has declined. To solve this problem, we developed an alternate HFD receiver system based on digital signal processing. The software-defined radio (SDR) technique enables the receiver to be set up without the knowledge of analog circuit devices. This approach also downsizes the system and reduces costs. A highly stabilized radio system for both the transmitter and receiver is necessary for stable long-term observations of various phenomena in the ionosphere. The global positioning system disciplined oscillator with an accuracy of $${10}^{-11}$$ 10 - 11 compensates for the frequency stability required by the new receiving system. In the new system, four frequencies are received and signal-processed simultaneously. The dynamic range of the new system is wider (> 130 dB) than that of the conventional system used in HFD observations conducted by the University of Electro-Communications in Japan. The signal-to-noise ratio significantly improved by 20 dB. The new digital system enables radio waves to be received with much smaller amplitudes at four different frequencies. The new digital receivers have been installed at some of the stations in the HFD observation network in Japan and have already captured various ionospheric phenomena, including medium-scale traveling ionospheric disturbances and sudden commencement induced electric field fluctuations, which indicates the feasibility of SDR for actual ionospheric observations. The new digital receiver is simple, inexpensive, and small in size, which makes it easy to deploy new receiving stations in Japan and elsewhere. These advantages of the new system will help drive the construction of a wide HFD observation network. Graphical Abstract


2021 ◽  
Author(s):  
Hiroyuki Nakata ◽  
Kenro Nozaki ◽  
Yuhei Oki ◽  
Keisuke Hosokawa ◽  
Kumiko Hashimoto ◽  
...  

Abstract High-frequency Doppler (HFD) sounding is a major remote sensing technique for monitoring the ionosphere. Conventional systems for HFDs mainly utilize analog circuits. However, existing analog systems have become difficult to maintain as the number of individuals adept at working with analog circuits has declined. To solve this problem, we developed an alternate HFD receiver system based on digital signal processing. The software-defined radio (SDR) technique enables the receiver to be set up without the knowledge of analog circuit devices. This approach also downsizes the system and reduces costs. A highly stabilized radio system for both the transmitter and receiver is necessary for stable long-term observations of various phenomena in the ionosphere. The global positioning system disciplined oscillator with an accuracy of H compensates for the frequency stability required by the new receiving system. In the new system, four frequencies are received and signal-processed simultaneously. The dynamic range of the new system is wider (> 130 dB) than that of the conventional system. The signal-to-noise ratio significantly improved by 20 dB. The new digital system enables radio waves to be received with much smaller amplitudes at four different frequencies. New digital receivers have been installed at some of the stations in the HFD observation network in Japan and have already captured various ionospheric phenomena, including medium-scale traveling ionospheric disturbances and sudden commencement induced electric field fluctuations, which indicates the feasibility of SDR for actual ionospheric observations. The new digital receiver is simple, inexpensive, and small in size, which makes it easy to deploy new receiving stations in Japan and elsewhere. These advantages of the new system will help drive the construction of a wide HFD observation network.


Author(s):  
B.J. Cain ◽  
G.L. Woods ◽  
A. Syed ◽  
R. Herlein ◽  
Toshihiro Nomura

Abstract Time-Resolved Emission (TRE) is a popular technique for non-invasive acquisition of time-domain waveforms from active nodes through the backside of an integrated circuit. [1] State-of-the art TRE systems offer high bandwidths (> 5 GHz), excellent spatial resolution (0.25um), and complete visibility of all nodes on the chip. TRE waveforms are typically used for detecting incorrect signal levels, race conditions, and/or timing faults with resolution of a few ps. However, extracting the exact voltage behavior from a TRE waveform is usually difficult because dynamic photon emission is a highly nonlinear process. This has limited the perceived utility of TRE in diagnosing analog circuits. In this paper, we demonstrate extraction of voltage waveforms in passing and failing conditions from a small-swing, differential logic circuit. The voltage waveforms obtained were crucial in corroborating a theory for some failures inside an 0.18um ASIC.


Author(s):  
Fubin Zhang ◽  
David Maxwell

Abstract Based on the understanding of laser based techniques’ physics theory and the topology/structure of analog circuit systems with feedback loops, the propagation of laser induced voltage/current alteration inside the analog IC is evaluated. A setup connection scheme is proposed to monitor this voltage/current alteration to achieve a better success rate in finding the fail site or defect. Finally, a case of successful isolation of a high resistance via on an analog device is presented.


Author(s):  
Ted Kolasa ◽  
Alfredo Mendoza

Abstract Comprehensive in situ (designed-in) diagnostic capabilities have been incorporated into digital microelectronic systems for years, yet similar capabilities are not commonly incorporated into the design of analog microelectronics. And as feature sizes shrink and back end interconnect metallization becomes more complex, the need for effective diagnostics for analog circuits becomes ever more critical. This paper presents concepts for incorporating in situ diagnostic capability into analog circuit designs. Aspects of analog diagnostic system architecture are discussed as well as nodal measurement scenarios for common signal types. As microelectronic feature sizes continue to shrink, diagnostic capabilities such as those presented here will become essential to the process of fault localization in analog circuits.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Mohammed Himdi ◽  
Majeed Alkanhal

Abstract This article presents a 60 GHz coplanar fed slotted antenna based on substrate integrated waveguide (SIW) technology for beam-tilting applications. The longitudinal passive slots are fed via associated SIW holes adjacent to the coplanar feed while the main excitation is provided from the microstrip-to-SIW transition. The antenna array achieves an impedance bandwidth of 57–64 GHz with gains reaching to 12 dBi. The passive SIW slots are excited with various orientations of coplanar feeds and associated holes covering an angular beam-tilting from −56° to +56° with an offset of 10° at the central frequency. The novelty of this work is; beam-tilting is achieved without the use of any active/passive phase shifters which improves the design in terms of losses and provide a much simpler alternative compared to the complex geometries available in the literature at the 60 GHz band.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 349
Author(s):  
Igor Aizenberg ◽  
Riccardo Belardi ◽  
Marco Bindi ◽  
Francesco Grasso ◽  
Stefano Manetti ◽  
...  

In this paper, we present a new method designed to recognize single parametric faults in analog circuits. The technique follows a rigorous approach constituted by three sequential steps: calculating the testability and extracting the ambiguity groups of the circuit under test (CUT); localizing the failure and putting it in the correct fault class (FC) via multi-frequency measurements or simulations; and (optional) estimating the value of the faulty component. The fabrication tolerances of the healthy components are taken into account in every step of the procedure. The work combines machine learning techniques, used for classification and approximation, with testability analysis procedures for analog circuits.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 678 ◽  
Author(s):  
Yixuan Song ◽  
Fang Yuan ◽  
Yuxia Li

In this paper, a new voltage-controlled memristor is presented. The mathematical expression of this memristor has an absolute value term, so it is called an absolute voltage-controlled memristor. The proposed memristor is locally active, which is proved by its DC V–I (Voltage–Current) plot. A simple three-order Wien-bridge chaotic circuit without inductor is constructed on the basis of the presented memristor. The dynamical behaviors of the simple chaotic system are analyzed in this paper. The main properties of this system are coexisting attractors and multistability. Furthermore, an analog circuit of this chaotic system is realized by the Multisim software. The multistability of the proposed system can enlarge the key space in encryption, which makes the encryption effect better. Therefore, the proposed chaotic system can be used as a pseudo-random sequence generator to provide key sequences for digital encryption systems. Thus, the chaotic system is discretized and implemented by Digital Signal Processing (DSP) technology. The National Institute of Standards and Technology (NIST) test and Approximate Entropy analysis of the proposed chaotic system are conducted in this paper.


Sign in / Sign up

Export Citation Format

Share Document