Fabrication of Host–Guest Complexes between Adamantane-Functionalized 1,3,4-Oxadiazoles and β-Cyclodextrin with Improved Control Efficiency against Intractable Plant Bacterial Diseases

Author(s):  
Qing-Tian Ji ◽  
Xian-Fu Mu ◽  
De-Kun Hu ◽  
Li-Jun Fan ◽  
Shu-Zhen Xiang ◽  
...  
2020 ◽  
Vol 140 ◽  
pp. 25-29
Author(s):  
K Akiyama ◽  
N Hirazawa ◽  
A Hatanaka

Oxytetracycline (OTC) has been commonly used as an effective antibiotic against various fish bacterial diseases, including vibriosis. In this study, the absorption-enhancing effect of citric acid on oral OTC pharmacokinetics and treatment of artificial Vibrio anguillarum infection was evaluated in juvenile yellowtail Seriola quinqueradiata followed by serum OTC concentration analysis. When 25 mg kg-1 body weight (BW) OTC was administered in combination with 1250 mg kg-1 BW citric acid, the serum OTC concentration reached almost the same concentration as that of the group treated with 50 mg kg-1 BW OTC. This coadministration successfully suppressed mortality due to vibriosis similar to the group treated with 50 mg kg-1 BW OTC. Conversely, poor efficacy was observed when only 25 mg kg-1 BW OTC was administered. These results suggest that coadministration of citric acid can be beneficial in reducing the dose of OTC needed for effective treatment, and thus contributes to the goal of reduced use of this antibiotic in aquaculture.


2015 ◽  
Vol 5 (1) ◽  
pp. 513-522
Author(s):  
Jean-Claude N'ZI ◽  
Lassina FONDIO ◽  
Mako Francois De Paul N’GBESSO ◽  
Andé Hortense DJIDJI ◽  
Christophe KOUAME

Thirty accessions of tomato including twenty eight introduced accessions from The World Vegetable Center-AVRDC and as controls, two commercial varieties Mongal and Calinago, were assessed for agronomic performances at the Experimentation and Production Station of Angud dou of the National Agronomic Research Centre (CNRA) located in the South of Cote d Ivoire. The trial was arranged in a randomized block with three replications. The following parameters were determined at vegetative development stage: plant height at flowering stage, susceptibility of accessions to diseases, day to 50% flowering and day of first harvest, production duration, fruit length, fruit diameter, total number of fruits, number of fruits per plant, potential yield, net yield and fruit damage rate. Results showed that the commercial variety Mongal, with a potential yield of 15.9 and a net yield of 13.1 t ha-1, was the most productive. All the introduced accessions from AVRDC recorded the lowest potential yields from 2.2 to 9.7 t ha-1, and net yields from 1.7 to 8.6 t ha-1. In addition, accessions WVCT8, FMTT847 and WVCT13 were severely infested by bacterial wilt. The reduction of the net yield of tomato accessions resulted in the high fruit damage rates. For the future tomato breeding work, it would be appropriate to introduce into the trials bacterial diseases tolerant varieties. Moreover, some studies could be undertaken to determine the nature of the bacteria involved in the plant wilting and to find out the causal agent of the tomato plants burning at the fructification stage reducing the harvest duration.


2020 ◽  
Vol 17 (8) ◽  
pp. 991-1041
Author(s):  
Divya Utreja ◽  
Jagdish Kaur ◽  
Komalpreet Kaur ◽  
Palak Jain

Triazine, one of the nitrogen containing heterocyclic compounds has attracted the considerable interest of researchers due to the vast array of biological properties such as anti-viral, antitumor, anti-convulsant, analgesic, antioxidant, anti-depressant, herbicidal, insecticidal, fungicidal, antibacterial and anti-inflammatory activities offered by it. Various antibacterial agents have been synthesized by researchers to curb bacterial diseases but due to rapid development in drug resistance, tolerance and side effects, there had always been a need for the synthesis of a new class of antibacterial agents that would exhibit improved pharmacological action. Therefore, this review mainly focuses on the various methods for the synthesis of triazine derivatives and their antibacterial activity.


2017 ◽  
Vol 6 (10) ◽  
pp. 5518 ◽  
Author(s):  
Deepak Narang ◽  
Jeevan Singh Tityal ◽  
Amit Jain ◽  
Reena Kulshreshtra ◽  
Fatima Khan

Antibiotics are the most important medical inventions in human history and are the invaluable weapons to fight against various infectious diseases. Multi drug resistant microorganisms are becoming a serious issue and increasingly public health problem in present day scenario. Antibiotics are becoming less useful due to increasing bacterial resistance. Development of new and more powerful antibiotics leading to drastic pathogens response by developing resistance to the point where the most powerful drugs in our arsenal are no longer effective against them. New strategies for the management of bacterial diseases are urgently needed and nanomaterials can be a very promising approach. Nanobiotics uses nano-sized tools for the successful management bacterial diseases and to gain increased understanding of the complex underlying patho-physiology of disease. (European Science Foundation. Forward Look Nanomedicine: An EMRC Consensus Opinion 2005. Available online: http://www.esf.org (accessed on 15 July 2017). The application of nanotechnologies to medicine, or nanomedicine, which has already demonstrated its tremendous impact on the pharmaceutical and biotechnology industries, is rapidly becoming a major driving force behind ongoing changes in the antimicrobial field. Present review providing important insights on nanobiotics, and their preparation, mechanism of action, as well as perspectives on the opportunities and challenges in nanobiotics.


2020 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Jane Ludvigsen ◽  
Åsmund Andersen ◽  
Linda Hjeljord ◽  
Knut Rudi

Honeybees represent one of the most important insect species we have, particularly due to their pollinating services. Several emerging fungal and bacterial diseases, however, are currently threatening honeybees without known mechanisms of pathogenicity. Therefore, the aim of the current work was to investigate the seasonal (winter, spring, summer, and autumn) fungal and bacterial distribution through different gut segments (crop, midgut, ileum, and rectum). This was done from two hives in Norway. Our main finding was that bacteria clustered by gut segments, while fungi were clustered by season. This knowledge can therefore be important in studying the epidemiology and potential mechanisms of emerging diseases in honeybees, and also serve as a baseline for understanding honeybee health.


Sign in / Sign up

Export Citation Format

Share Document