scholarly journals Potential Influence of Climate Change on Grain Self‐Sufficiency at the Country Level Considering Adaptation Measures

2019 ◽  
Vol 7 (10) ◽  
pp. 1152-1166 ◽  
Author(s):  
Taoyuan Wei ◽  
Tianyi Zhang ◽  
Xuefeng Cui ◽  
Solveig Glomsrød ◽  
Yu Liu
2021 ◽  
Author(s):  
Thida Htoo

This study attempts to examine the effect of climate change on agricultural production in Myanmar. The study is based on country level data of Myanmar cereal crops for the time span of 2009 to 2019 obtained from various sources such as FAO STAT and Department of Agriculture and Department of Meteorology. This study is mainly used by multiple regression model to find out the best fit in the model. The research found that a 1°C increase in temperature in the growing period may decrease with production of cereal by 3849347 ton. A 1mm increase in rainfall in the growing period may decrease production of cereal by 5762 ton. The research found that change in temperature is adversely affected on production of cereal crops in Myanmar. The policies aiming to enhance production of cereal crops should focus on adoption of climate change adaptation measures in Myanmar.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 546
Author(s):  
Andreas Matzarakis

In the era of climate change, before developing and establishing mitigation and adaptation measures that counteract urban heat island (UHI) effects [...]


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1494
Author(s):  
Bernardo Teufel ◽  
Laxmi Sushama

Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 273
Author(s):  
Samuel Royer-Tardif ◽  
Jürgen Bauhus ◽  
Frédérik Doyon ◽  
Philippe Nolet ◽  
Nelson Thiffault ◽  
...  

Climate change is threatening our ability to manage forest ecosystems sustainably. Despite strong consensus on the need for a broad portfolio of options to face this challenge, diversified management options have yet to be widely implemented. Inspired by functional zoning, a concept aimed at optimizing biodiversity conservation and wood production in multiple-use forest landscapes, we present a portfolio of management options that intersects management objectives with forest vulnerability to better address the wide range of goals inherent to forest management under climate change. Using this approach, we illustrate how different adaptation options could be implemented when faced with impacts related to climate change and its uncertainty. These options range from establishing ecological reserves in climatic refuges, where self-organizing ecological processes can result in resilient forests, to intensive plantation silviculture that could ensure a stable wood supply in an uncertain future. While adaptation measures in forests that are less vulnerable correspond to the traditional functional zoning management objectives, forests with higher vulnerability might be candidates for transformative measures as they may be more susceptible to abrupt changes in structure and composition. To illustrate how this portfolio of management options could be applied, we present a theoretical case study for the eastern boreal forest of Canada. Even if these options are supported by solid evidence, their implementation across the landscape may present some challenges and will require good communication among stakeholders and with the public.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Helder Fraga ◽  
Marco Moriondo ◽  
Luisa Leolini ◽  
João A. Santos

The olive tree (Olea europaea L.) is an ancient traditional crop in the Mediterranean Basin. In the Mediterranean region, traditional olive orchards are distinguishable by their prevailing climatic conditions. Olive trees are indeed considered one of the most suitable and best-adapted species to the Mediterranean-type climate. However, new challenges are predicted to arise from climate change, threatening this traditional crop. The Mediterranean Basin is considered a climate change “hotspot,” as future projections hint at considerable warming and drying trends. Changes in olive tree suitability have already been reported over the last few decades. In this context, climate change may become particularly challenging for olive growers. The growing evidence for significant climate change in the upcoming decades urges adaptation measures to be taken. To effectively cope with the projected changes, both short and long-term adaptation strategies must be timely planned by the sector stakeholders and decision-makers to adapt for a warmer and dryer future. The current manuscript is devoted to illustrating the main impacts of climate change on olive tree cultivation in the Mediterranean Basin, by reviewing the most recent studies on this subject. Additionally, an analysis of possible adaptation strategies against the potentially negative impacts of climate change was also performed.


Author(s):  
Sutyajeet Soneja ◽  
Gina Tsarouchi ◽  
Darren Lumbroso ◽  
Dao Khanh Tung

Abstract Purpose of review The purpose of this review is to summarize research articles that provide risk estimates for the historical and future impact that climate change has had upon dengue published from 2007 through 2019. Recent findings Findings from 30 studies on historical health estimates, with the majority of the studies conducted in Asia, emphasized the importance of temperature, precipitation, and relative humidity, as well as lag effects, when trying to understand how climate change can impact the risk of contracting dengue. Furthermore, 35 studies presented findings on future health risk based upon climate projection scenarios, with a third of them showcasing global level estimates and findings across the articles emphasizing the need to understand risk at a localized level as the impacts from climate change will be experienced inequitably across different geographies in the future. Summary Dengue is one of the most rapidly spreading viral diseases in the world, with ~390 million people infected worldwide annually. Several factors have contributed towards its proliferation, including climate change. Multiple studies have previously been conducted examining the relationship between dengue and climate change, both from a historical and a future risk perspective. We searched the U.S. National Institute of Environmental Health (NIEHS) Climate Change and Health Portal for literature (spanning January 2007 to September 2019) providing historical and future health risk estimates of contracting dengue infection in relation to climate variables worldwide. With an overview of the evidence of the historical and future health risk posed by dengue from climate change across different regions of the world, this review article enables the research and policy community to understand where the knowledge gaps are and what areas need to be addressed in order to implement localized adaptation measures to mitigate the health risks posed by future dengue infection.


2016 ◽  
Vol 73 (9) ◽  
pp. 2251-2259 ◽  
Author(s):  
J. U. Hasse ◽  
D. E. Weingaertner

As the central product of the BMBF-KLIMZUG-funded Joint Network and Research Project (JNRP) ‘dynaklim – Dynamic adaptation of regional planning and development processes to the effects of climate change in the Emscher-Lippe region (North Rhine Westphalia, Germany)’, the Roadmap 2020 ‘Regional Climate Adaptation’ has been developed by the various regional stakeholders and institutions containing specific regional scenarios, strategies and adaptation measures applicable throughout the region. This paper presents the method, elements and main results of this regional roadmap process by using the example of the thematic sub-roadmap ‘Water Sensitive Urban Design 2020’. With a focus on the process support tool ‘KlimaFLEX’, one of the main adaptation measures of the WSUD 2020 roadmap, typical challenges for integrated climate change adaptation like scattered knowledge, knowledge gaps and divided responsibilities but also potential solutions and promising chances for urban development and urban water management are discussed. With the roadmap and the related tool, the relevant stakeholders of the Emscher-Lippe region have jointly developed important prerequisites to integrate their knowledge, to clarify vulnerabilities, adaptation goals, responsibilities and interests, and to foresightedly coordinate measures, resources, priorities and schedules for an efficient joint urban planning, well-grounded decision-making in times of continued uncertainties and step-by-step implementation of adaptation measures from now on.


Sign in / Sign up

Export Citation Format

Share Document