Long-term rotation instabilities of the Earth: A Reanalysis

Author(s):  
R. Sabadini ◽  
B. L. A. Vermeersen
Keyword(s):  
2015 ◽  
Vol 42 (5) ◽  
pp. 477-499
Author(s):  
Michael John Paton

The 2011 tsunami had a devastating effect on the east coast of Japan. Particularly poignant were the century-old markers on hillsides warning against building anywhere below. Nevertheless, such wisdom from traditional knowledge was disregarded because of the perceived invulnerability of the modern. This paper attempts to garner such traditional empirical knowledge regarding the siting of towns and cities by considering the Chinese art/science of fengshui (wind and water) or dili (principles of the earth), the original purpose of which was to site human habitation in the most favourable places for long term survival. This knowledge is then used to consider the placement of cities created by modernity, those founded on and flourishing through the advent of globalisation, such as Hong Kong, Shanghai, St Petersburg, and Sydney.


2021 ◽  
Author(s):  
Cédric Gillmann ◽  
Gregor Golabek ◽  
Sean Raymond ◽  
Paul Tackley ◽  
Maria Schonbachler ◽  
...  

<p>Terrestrial planets in the Solar system generally lack surface liquid water. Earth is at odd with this observation and with the idea of the giant Moon-forming impact that should have vaporized any pre-existing water, leaving behind a dry Earth. Given the evidence available, this means that either water was brought back later or the giant impact could not vaporize all the water.</p><p>We have looked at Venus for answers. Indeed, it is an example of an active planet that may have followed a radically different evolutionary pathway despite the similar mechanisms at work and probably comparable initial conditions. However, due to the lack of present-day plate tectonics, volatile recycling, and any surface liquid oceans, the evolution of Venus has likely been more straightforward than that of the Earth, making it easier to understand and model over its long term evolution.</p><p>Here, we investigate the long-term evolution of Venus using self-consistent numerical models of global thermochemical mantle convection coupled with both an atmospheric evolution model and a late accretion N-body delivery model. We test implications of wet and dry late accretion compositions, using present-day Venus atmosphere measurements. Atmospheric losses are only able to remove a limited amount of water over the history of the planet. We show that late accretion of wet material exceeds this sink. CO<sub>2</sub> and N<sub>2</sub> contributions serve as additional constraints.</p><p>Water-rich asteroids colliding with Venus and releasing their water as vapor cannot explain the composition of Venus atmosphere as we measure it today. It means that the asteroidal material that came to Venus, and thus to Earth, after the giant impact must have been dry (enstatite chondrites), therefore preventing the replenishment of the Earth in water. Because water can obviously be found on our planet today, it means that the water we are now enjoying on Earth has been there since its formation, likely buried deep in the Earth so it could survive the giant impact. This in turn suggests that suggests that planets likely formed with their near-full budget in water, and slowly lost it with time.</p>


2018 ◽  
Author(s):  
Angelo De Santis ◽  
Gianfranco Cianchini ◽  
Rita Di Giovambattista ◽  
Cristoforo Abbattista ◽  
Lucilla Alfonsi ◽  
...  

Abstract. Geosystemics (De Santis 2009, 2014) studies the Earth system as a whole focusing on the possible coupling among the Earth layers (the so called geo-layers), and using universal tools to integrate different methods that can be applied to multi-parameter data, often taken on different platforms. Its main objective is to understand the particular phenomenon of interest from a holistic point of view. In this paper we will deal with earthquakes, considered as a long term chain of processes involving, not only the interaction between different components of the Earth’s interior, but also the coupling of the solid earth with the above neutral and ionized atmosphere, and finally culminating with the main rupture along the fault of concern (De Santis et al., 2015a). Some case studies (particular emphasis is given to recent central Italy earthquakes) will be discussed in the frame of the geosystemic approach for better understanding the physics of the underlying complex dynamical system.


2009 ◽  
Vol 2 (2) ◽  
pp. 1075-1097
Author(s):  
A. Sarkissian ◽  
J. Slusser

Abstract. Water vapor total column measurements at Observatoire de Haute Provence (5°42' E, +43°55' N), south of France, were obtained using observations of astronomical objects made between July 1994 and December 2004 on the 193-cm telescope with the high-resolution spectrometer Elodie. Spectra of stars, nebulae, and other astronomical objects were taken regularly during 10 years. More than 18 000 spectra from 400 nm to 680 nm are available on-line in the Elodie Archive. This archive, usually explored by astronomers, contains information to study the atmosphere of the Earth. Water vapor absorption lines appear in the visible in delimited bands that astronomers often avoid for their spectral analysis. We used the Elodie Archive with two objectives: firstly, to retrieve seasonal variability and long-term trend of atmospheric water vapor, and secondly, to remove signatures in spectra for further astronomical or geophysical use. The tools presented here are developed following, when possible, formats and standards recommended by the International Virtual Observatory Alliance.


Author(s):  
Yuri P. Perevedentsev ◽  
Konstantin M. Shantalinskii ◽  
Boris G. Sherstukov ◽  
Alexander A. Nikolaev

Long-term changes in air temperature on the territory of the Republic of Tatarstan in the 20th–21st centuries are considered. The periods of unambiguous changes in the surface air temperature are determined. It is established that the average winter temperature from the 1970s to 2017, increased in the Kazan region by more than 3 °C and the average summer temperature increased by about 2 °C over the same period. The contribution of global scale processes to the variability of the temperature of the Kazan region is shown: it was 37 % in winter, 23 % in summer. The correlation analysis of the anomalies of average annual air temperature in Kazan and the series of air temperature anomalies in each node over the continents, as well as the ocean surface temperature in each coordinate node on Earth for 1880 –2017, was performed. Long-distance communications were detected in the temperature field between Kazan and remote regions of the Earth. It is noted that long-period climate fluctuations in Kazan occur synchronously with fluctuations in the high latitudes of Asia and North America, with fluctuations in ocean surface temperature in the Arctic ocean, with fluctuations in air temperature in the Far East, and with fluctuations in ocean surface temperature in the Southern hemisphere in the Indian and Pacific oceans, as well as air temperature in southern Australia. It is suggested that there is a global mechanism that regulates long-term climate fluctuations throughout the Earth in the considered interval of 200 years of observations. According to the CMIP5 project, climatic scenarios were built for Kazan until the end of the 21st century.


2021 ◽  
Vol 136 (5) ◽  
Author(s):  
Andrea Basti ◽  
Nicolò Beverini ◽  
Filippo Bosi ◽  
Giorgio Carelli ◽  
Donatella Ciampini ◽  
...  

AbstractGINGERINO is one of the most sensitive Sagnac laser-gyroscopes based on an heterolithic mechanical structure. It is a prototype for GINGER, the laser gyroscopes array proposed to reconstruct the Earth rotation vector and in this way to measure General Relativity effects. Many factors affect the final sensitivity of laser gyroscopes, in particular, when they are used in long-term measurements, slow varying environmental parameters come into play. To understand the role of different terms allows to design more effective mechanical as well as optical layouts, while a proper model of the dynamics affecting long-term (low frequency) signals would increase the effectiveness of the data analysis for improving the overall sensitivity. In this contribution, we focus our concerns on the effects of room temperature and pressure aiming at further improving mechanical design and long-term stability of the apparatus. Our data are compatible with a local orientation changes of the Gran Sasso site below $$\mu $$ μ rad as predicted by geodetic models. This value is consistent with the requirements for GINGER and the installation of an high-sensitivity Sagnac gyroscope oriented at the maximum signal, i.e. along the Earth rotation axes.


2005 ◽  
Vol 13 ◽  
pp. 763-763
Author(s):  
Donald B. Campbell ◽  
John K. Harmon ◽  
Micael C. Nolan ◽  
Steven J. Ostro

Nine comets have been detected with either the Arecibo (12.6 cm wavelength) or Goldstone (3.5 cm) radar systems. Included are six nucleus detections and five detections of echoes from coma grains. The radar backscatter cross sections measured for the nuclei correlate well with independent estimates of their sizes and are indicative of surface densities in the range of 0.5 to 1.0 g cm-3. Like most asteroids, comets appear to have surfaces that are very rough at scales much larger than the radar wavelength. Coma echo models can explain the radar cross sections using grain size distributions that include a substantial population of cm-sized grains. A long term goal of the cometary radar program has been the high resolution imaging of a cometary nucleus. Eleven short period comets are potentially detectable over the next two decades a few of which may be suitable for imaging. We are always waiting for the arrival of a new comet with an orbit that brings it within 0.1 AU of the earth.


Author(s):  
Jan Zalasiewicz ◽  
Mark Williams ◽  
Richard Fortey ◽  
Alan Smith ◽  
Tiffany L. Barry ◽  
...  

The Anthropocene, an informal term used to signal the impact of collective human activity on biological, physical and chemical processes on the Earth system, is assessed using stratigraphic criteria. It is complex in time, space and process, and may be considered in terms of the scale, relative timing, duration and novelty of its various phenomena. The lithostratigraphic signal includes both direct components, such as urban constructions and man-made deposits, and indirect ones, such as sediment flux changes. Already widespread, these are producing a significant ‘event layer’, locally with considerable long-term preservation potential. Chemostratigraphic signals include new organic compounds, but are likely to be dominated by the effects of CO 2 release, particularly via acidification in the marine realm, and man-made radionuclides. The sequence stratigraphic signal is negligible to date, but may become geologically significant over centennial/millennial time scales. The rapidly growing biostratigraphic signal includes geologically novel aspects (the scale of globally transferred species) and geologically will have permanent effects.


2021 ◽  
Author(s):  
Mireia Mestre ◽  
Juan Höfer

<p>Despite being major players on the global biogeochemical cycles, microorganisms are generally not included in holistic views of Earth’s system. The Microbial Conveyor Belt is a conceptual framework that represents a recurrent and cyclical flux of microorganisms across the globe, connecting distant ecosystems and Earth compartments. This long-range dispersion of microorganisms directly influences the microbial biogeography, the global cycling of inorganic and organic matter, and thus the Earth system’s functioning and long-term resilience. Planetary-scale human impacts disrupting the natural flux of microorganisms pose a major threat to the Microbial Conveyor Belt, thus compromising microbial ecosystem services. Perturbations that modify the natural dispersion of microorganisms are, for example, the modification of the intensity/direction of air fluxes and ocean currents due to climate change, the vanishing of certain dispersion vectors (e.g., species extinction or drying rivers) or the introduction of new ones (e.g., microplastics, wildfires). Transdisciplinary approaches are needed to disentangle the Microbial Conveyor Belt, its major threats and their consequences for Earth´s system resilience.</p>


Author(s):  
Robert A. Berner

The cycle of carbon is essential to the maintenance of life, to climate, and to the composition of the atmosphere and oceans. What is normally thought of as the “carbon cycle” is the transfer of carbon between the atmosphere, the oceans, and life. This is not the subject of interest of this book. To understand this apparently confusing statement, it is necessary to separate the carbon cycle into two cycles: the short-term cycle and the long-term cycle. The “carbon cycle,” as most people understand it, is represented in figure 1.1. Carbon dioxide is taken up via photosynthesis by green plants on the continents or phytoplankton in the ocean. On land carbon is transferred to soils by the dropping of leaves, root growth, and respiration, the death of plants, and the development of soil biota. Land herbivores eat the plants, and carnivores eat the herbivores. In the oceans the phytoplankton are eaten by zooplankton that are in turn eaten by larger and larger organisms. The plants, plankton, and animals respire CO2. Upon death the plants and animals are decomposed by microorganisms with the ultimate production of CO2. Carbon dioxide is exchanged between the oceans and atmosphere, and dissolved organic matter is carried in solution by rivers from soils to the sea. This all constitutes the shortterm carbon cycle. The word “short-term” is used because the characteristic times for transferring carbon between reservoirs range from days to tens of thousands of years. Because the earth is more than four billion years old, this is short on a geological time scale. As the short-term cycle proceeds, concentrations of the two principal atmospheric gases, CO2 and CH4, can change as a result of perturbations of the cycle. Because these two are both greenhouse gases—in other words, they adsorb outgoing infrared radiation from the earth surface—changes in their concentrations can involve global warming and cooling over centuries and many millennia. Such changes have accompanied global climate change over the Quaternary period (past 2 million years), although other factors, such as variations in the receipt of solar radiation due to changes in characteristics of the earth’s orbit, have also contributed to climate change.


Sign in / Sign up

Export Citation Format

Share Document