scholarly journals Lifestyles, genetics, and future perspectives on gastric cancer in east Asian populations

Author(s):  
Hiroto Katoh ◽  
Shumpei Ishikawa

AbstractThe prevalence of gastric cancer (GC) differs among regions worldwide, with the highest occurrence in east Asia. Thus, its etiology, with respect to ethnic background, environmental factors, and lifestyles, is also thought to differ essentially. In addition, etiology of GC is speculated to be changing due to the recent decrease in the Helicobacter pylori (H. pylori) infection in Japan. State-of-the-art somatic/germline cancer genomics has clarified the etiologies of gastric carcinogenesis. In this review article, we summarize past and present milestones in our understanding of GC achieved through genomic approaches, including a recent report that revealed higher-than-expected frequencies of GCs attributed to east Asian-specific germline variants in ALDH2 or CDH1 in combination with lifestyles. Based on this updated knowledge, we also discuss the possible impact of and high-risk approaches for GCs in the upcoming “H. pylori-negative era.”

2020 ◽  
Author(s):  
Faisal Aziz ◽  
Mingxia Xin ◽  
Yunfeng Gao ◽  
Josh Monts ◽  
Kjersten Monson ◽  
...  

Abstract Background: Gastric cancer risk evolves over time due to environmental, dietary, and lifestyle changes including Helicobacter pylori (H. pylori) infection and consumption of hot peppers (i.e. capsaicin). H. pylori infection promotes gastric mucosal injury in the early phase of capsaicin exposure. In addition, capsaicin consumption is reported to suppress immune function and increase host susceptibility to microbial infection. This relationship suggests a need to investigate the mechanism of how both H. pylori infection and capsaicin contribute to gastric inflammation and lead to gastric cancer. No previous experimental animal models have been developed to study this dual association. Here we developed a series of mouse models that progress from chronic gastritis to gastric cancer. C57-Balb/c mice were infected with the H. pylori (SS1) strain and then fed capsaicin (0.05% or 0.2g/kg/day) or not. Consequently, we investigated the association between H. pylori infection and capsaicin consumption during the initiation of gastric inflammation and the later development of gastric cancer. Tumor size and phenotype were analyzed to determine the molecular mechanism driving the shift from gastritis to stomach cancer. Gastric carcinogenesis was also prevented in these models using the ornithine decarboxylase inhibitor DFMO (2-difluoromethylornithine). Results: This study provides evidence showing that a combination of H. pylori infection and capsaicin consumption leads to gastric carcinogenesis. The transition from chronic gastritis to gastric cancer is mediated through interleukin-6 (IL-6) stimulation with an incidence rate of 50%. However, this progression can be prevented by treating with anti-inflammatory agents. In particular, we used DFMO to prevent gastric tumorigenesis by reducing inflammation and promoting recovery of disease-free stasis. The anti-inflammatory role of DFMO highlights the injurious effect of inflammation in gastric cancer development and the need to reduce gastric inflammation for cancer prevention. Conclusions: Overall, these mouse models provide reliable systems for analyzing the molecular mechanisms and synergistic effects of H. pylori and capsaicin on human cancer etiology. Accordingly, preventive measures like reduced capsaicin consumption, H. pylori clearance, and DFMO treatment can lessen gastric cancer incidence. Lastly, anti-inflammatory agents like DFMO can play important roles in prevention of inflammation-associated gastric cancer.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 725 ◽  
Author(s):  
Tegshee Tserentogtokh ◽  
Boldbaatar Gantuya ◽  
Phawinee Subsomwong ◽  
Khasag Oyuntsetseg ◽  
Dashdorj Bolor ◽  
...  

Helicobacter pylori infection possessing East-Asian-type CagA is associated with carcinogenesis. Mongolia has the highest mortality rate from gastric cancer. Therefore, we evaluated the CagA status in the Mongolian population. High risk and gastric cancer patients were determined using endoscopy and histological examination. H. pylori strains were isolated from different locations in Mongolia. The CagA subtypes (East-Asian-type or Western-type, based on sequencing of Glu-Pro-Ile-Tyr-Ala (EPIYA) segments) and vacA genotypes (s and m regions) were determined using PCR-based sequencing and PCR, respectively. In total, 368 patients were examined (341 gastritis, 10 peptic ulcer, and 17 gastric cancer). Sixty-two (16.8%) strains were cagA-negative and 306 (83.1%) were cagA-positive (293 Western-type, 12 East-Asian-type, and one hybrid type). All cagA-negative strains were isolated from gastritis patients. In the gastritis group, 78.6% (268/341) had Western-type CagA, 2.9% (10/341) had East-Asian-type, and 18.2% (61/341) were cagA-negative. However, all H. pylori from gastric cancer patients possessed Western-type CagA. Histological analyses showed that East-Asian-type CagA was the most virulent strains, followed by Western-type and cagA-negative strains. This finding agreed with the current consensus. CagA-positive strains were the most virulent type. However, the fact that different CagA types can explain the high incidence of gastric cancer might be inapplicable in Mongolia.


2019 ◽  
Vol 12 ◽  
pp. 175628481989406 ◽  
Author(s):  
Christian Schulz ◽  
Kerstin Schütte ◽  
Julia Mayerle ◽  
Peter Malfertheiner

A link between chronic inflammation and carcinogenesis has been depicted in many organ systems. Helicobacter pylori is the most prevalent bacterial pathogen, induces chronic gastritis and is associated with more than 90% of cases of gastric cancer (GC). However, the introduction of nucleotide sequencing techniques and the development of biocomputional tools have surpassed traditional culturing techniques and opened a wide field for studying the mucosal and luminal composition of the bacterial gastric microbiota beyond H. pylori. In studies applying animal models, a potential role in gastric carcinogenesis for additional bacteria besides H. pylori has been demonstrated. At different steps of gastric carcinogenesis, changes in bacterial communities occur. Whether these microbial changes are a driver of malignant disease or a consequence of the histologic progression along the precancerous cascade, is not clear at present. It is hypothesized that atrophy, as a consequence of chronic gastric inflammation, alters the gastric niche for commensals that might further urge the development of H. pylori-induced GC. Here, we review the current state of knowledge on gastric bacteria other than H. pylori and on their synergism with H. pylori in gastric carcinogenesis.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Sergio Lario ◽  
María J. Ramírez-Lázaro ◽  
Aintzane González-Lahera ◽  
José L. Lavín ◽  
Maria Vila-Casadesús ◽  
...  

Abstract Helicobacter pylori infects 4.4 billion individuals worldwide and is considered the most important etiologic agent for peptic ulcers and gastric cancer. Individual response to H. pylori infection is complex and depends on complex interactions between host and environmental factors. The pathway towards gastric cancer is a sequence of events known as Correa’s model of gastric carcinogenesis, a stepwise inflammatory process from normal mucosa to chronic-active gastritis, atrophy, metaplasia and gastric adenocarcinoma. This study examines gastric clinical specimens representing different steps of the Correa pathway with the aim of identifying the expression profiles of coding- and non-coding RNAs that may have a role in Correa’s model of gastric carcinogenesis. We screened for differentially expressed genes in gastric biopsies by employing RNAseq, microarrays and qRT-PCR. Here we provide a detailed description of the experiments, methods and results generated. The datasets may help other scientists and clinicians to find new clues to the pathogenesis of H. pylori and the mechanisms of progression of the infection to more severe gastric diseases. Data is available via ArrayExpress.


Author(s):  
Ji Min Choi ◽  
Sang Gyun Kim

It is known that gastric carcinogenesis results from the progressive changes from chronic gastritis to gastric atrophy, intestinal metaplasia, dysplasia, and invasive carcinoma. Several genetic and epigenetic alterations are involved in this process, and Helicobacter pylori (H. pylori) infection is believed to induce the initiation and progression of these steps. From an epigenetic point of view, H. pylori induces hypermethylation of genes involved in the development of gastric cancer and regulates the expression of various microRNAs (miRNAs). These H. pylori-related epigenetic changes are accumulated not only at the site of neoplasm but also in the adjacent non-cancerous gastric mucosa. Thereby, a state vulnerable to gastric cancer known as an epigenetic field defect is formed. H. pylori eradication can have an effective chemopreventive effect in gastric carcinogenesis. However, the molecular biological changes that occur in the stomach environment during H. pylori eradication have not yet been established. Several studies have reported that H. pylori eradication can restore infection-related changes, especially epigenetic alterations in gastric cancer-related genes, but some studies have shown otherwise. Simply put, it appears that the recovery of methylated gastric cancer-related genes and miRNAs during H. pylori eradication may vary among genes and may also differ depending on the histological subtype of the gastric mucosa. In this review, we will discuss the potential mechanism of gastric cancer prevention by H. pylori eradication, mainly from an epigenetic perspective.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mariagrazia Piscione ◽  
Mariangela Mazzone ◽  
Maria Carmela Di Marcantonio ◽  
Raffaella Muraro ◽  
Gabriella Mincione

Worldwide, gastric cancer (GC) represents the fifth cancer for incidence, and the third as cause of death in developed countries. Indeed, it resulted in more than 780,000 deaths in 2018. Helicobacter pylori appears to be responsible for the majority of these cancers. On the basis of recent studies, and either alone or combined with additional etiological factors, H. pylori is considered a “type I carcinogen.” Over recent decades, new insights have been obtained into the strategies that have been adopted by H. pylori to survive the acidic conditions of the gastric environment, and to result in persistent infection, and dysregulation of host functions. The multistep processes involved in the development of GC are initiated by transition of the mucosa into chronic non-atrophic gastritis, which is primarily triggered by infection with H. pylori. This gastritis then progresses into atrophic gastritis and intestinal metaplasia, and then to dysplasia, and following Correa’s cascade, to adenocarcinoma. The use of antibiotics for eradication of H. pylori can reduce the incidence of precancerous lesions only in the early stages of gastric carcinogenesis. Here, we first survey the etiology and risk factors of GC, and then we analyze the mechanisms underlying tumorigenesis induced by H. pylori, focusing attention on virulence factor CagA, inflammation, oxidative stress, and ErbB2 receptor tyrosine kinase. Moreover, we investigate the relationships between H. pylori eradication therapy and other diseases, considering not only cardia (upper stomach) cancers and Barrett’s esophagus, but also asthma and allergies, through discussion of the “hygiene hypothesis. ” This hypothesis suggests that improved hygiene and antibiotic use in early life reduces microbial exposure, such that the immune response does not become primed, and individuals are not protected against atopic disorders, asthma, and autoimmune diseases. Finally, we overview recent advances to uncover the complex interplay between H. pylori and the gut microbiota during gastric carcinogenesis, as characterized by reduced bacterial diversity and increased microbial dysbiosis. Indeed, it is of particular importance to identify the bacterial taxa of the stomach that might predict the outcome of gastric disease through the stages of Correa’s cascade, to improve prevention and therapy of gastric carcinoma.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Trang Hoa Nguyen ◽  
Trang Thi My Ho ◽  
Thien-Phuc Nguyen-Hoang ◽  
Shamsul Qumar ◽  
Thuc Tran Dang Pham ◽  
...  

Abstract Background The burden of Helicobacter pylori-induced gastric cancer varies based on predominant H. pylori population in various geographical regions. Vietnam is a high H. pylori burden country with the highest age-standardized incidence rate of gastric cancer (16.3 cases/100,000 for both sexes) in Southeast Asia, despite this data on the H. pylori population is scanty. We examined the global context of the endemic H. pylori population in Vietnam and present a contextual and comparative genomics analysis of 83 H. pylori isolates from patients in Vietnam. Results There are at least two major H. pylori populations are circulating in symptomatic Vietnamese patients. The majority of the isolates (~ 80%, 66/83) belong to the hspEastAsia and the remaining belong to hpEurope population (~ 20%, 17/83). In total, 66 isolates (66/83) were cagA positive, 64 were hspEastAsia isolates and two were hpEurope isolates. Examination of the second repeat region revealed that most of the cagA genes were ABD type (63/66; 61 were hspEastAsia isolates and two were hpEurope isolates). The remaining three isolates (all from hspEastAsia isolates) were ABC or ABCC types. We also detected that 4.5% (3/66) cagA gene from hspEastAsia isolates contained EPIYA-like sequences, ESIYA at EPIYA-B segments. Analysis of the vacA allelic type revealed 98.8% (82/83) and 41% (34/83) of the strains harboured the s1 and m1 allelic variant, respectively; 34/83 carried both s1m1 alleles. The most frequent genotypes among the cagA positive isolates were vacA s1m1/cagA + and vacA s1m2/cagA + , accounting for 51.5% (34/66) and 48.5% (32/66) of the isolates, respectively. Conclusions There are two predominant lineages of H. pylori circulating in Vietnam; most of the isolates belong to the hspEastAsia population. The hpEurope population is further divided into two smaller clusters.


2019 ◽  
Vol 2 (3) ◽  
pp. 83-99
Author(s):  
T.W. Wan ◽  
O. Khokhlova ◽  
W. Higuchi ◽  
I. Protasova ◽  
Olga V. Peryanova ◽  
...  

Abstract Helicobacter pylori, one of the most prevalent human pathogens, colonizes the gastric mucosa and is associated with gastric diseases, such as gastritis and peptic ulcers, and is also a bacterial risk factor for gastric cancer. Cytotoxin-associated gene A (CagA) protein, a major virulence factor of H. pylori, is phosphorylated in cells at its Glu-Pro-IIe-Tyr-Ala (EPIYA) motif and is considered to trigger gastric cancer. CagA is classified into two forms, Western CagA with EPIYA-ABC and East Asian CagA with EPIYA-ABD, with the latter associated with a high risk of developing gastric cancer. CagA causes morphological transformation of cells, yielding the “hummingbird” phenotype in AGS cells and possibly membranous pedestals in the gastric epithelium, albeit rarely. H. pylori adherence to the gastric mucosa is not yet fully understood. Here, we describe an intrafamilial infection case of H. pylori, focusing on the gastric epithelium, H. pylori adherence, and a gene mutation in a child with protein-losing gastroenteropathy (characterized by excessive loss of plasma proteins into the gastrointestinal tract). H. pylori, which also infected family members (mother and father), was genetically a single clone with the virulence genes of an East Asian type. The patient’ gastric mucosa exhibited some unique features. Endoscopy revealed the presence of protein plugs on the mucosal surface, which were immunoelectrophoretically similar to serum proteins. Electron microscopy revealed abnormal gastric epithelial cells, totally covered with the secretions or possessing small swollen structures and irregular microvilli. The patient’s H. pylori infection was characterized by frequently occurring thick pedestals, formed along adherent H. pylori. The serum protein level returned to normal and the protein plugs disappeared after the successful eradication of H. pylori, albeit with lag periods for healing. He had a mutation in the OCRL1 gene, associated with Dent disease (asymptomatic proteinuria). Thus, in the patient’s gastric mucosa, we found the abnormal gastric epithelial cells, which may be caused by an OCRL1 mutation or H. pylori, and pedestal-rich H. pylori infection, possibly caused by a higher level of action of CagA in the abnormal epithelial cells. The data suggests a novel H. pylori virulence factor associated with “excessive plasma protein release”.


2021 ◽  
Author(s):  
Yuanhai You ◽  
Kaisa Thorell ◽  
Lihua He ◽  
Koji Yahara ◽  
Yoshio Yamaoka ◽  
...  

The East Asian region, including China, Japan and Korea, accounts for half of gastric cancer deaths. However, different areas have contrasting gastric cancer incidence and the population structure of Helicobacter pylori in this ethnically diverse region is yet unknown. We aimed to investigate genomic differences in H. pylori between these areas to identify sequence polymorphisms associated with increased cancer risk. We analysed 381 H. pylori genomes collected from different areas of the three countries using phylogenetic and population genetic tools to characterize population differentiation. The functional consequences of Single Nucleotide Polymorphisms (SNPs) with a highest fixation index (Fst) between subpopulations were examined by mapping amino-acid changes on 3D protein structure, solved or modelled. 329/381 genomes belonged to the previously identified hspEAsia population indicating that import of bacteria from other regions of the world has been uncommon. Seven sub-regional clusters were found within hspEAsia, related to sub-populations with various ethnicities, geographies and gastric cancer risks. Sub-population-specific amino-acid changes were found in multi-drug exporters (hefC), transporters (frpB-4), outer membrane proteins (hopI), and several genes involved in host interaction, such as catalase, involved in H2O2 entrance, and a flagellin site mimicking host glycosylation. Several of the top hits including frpB-4, hefC, alpB/hopB, and hofC. were also differentiated within the Americas, indicating that a handful of genes may be key to local geographic adaptation. H. pylori within East Asia are not homogeneous but have become differentiated geographically at multiple loci that have facilitated adaptation to local conditions and hosts. This has important implications for further evaluation of these changes in relation to the varying gastric cancer incidence between geographical areas in this region.


2020 ◽  
Vol 21 (17) ◽  
pp. 6451 ◽  
Author(s):  
James W. T. Toh ◽  
Robert B. Wilson

Helicobacter pylori is a class one carcinogen which causes chronic atrophic gastritis, gastric intestinal metaplasia, dysplasia and adenocarcinoma. The mechanisms by which H. pylori interacts with other risk and protective factors, particularly vitamin C in gastric carcinogenesis are complex. Gastric carcinogenesis includes metabolic, environmental, epigenetic, genomic, infective, inflammatory and oncogenic pathways. The molecular classification of gastric cancer subtypes has revolutionized the understanding of gastric carcinogenesis. This includes the tumour microenvironment, germline mutations, and the role of Helicobacter pylori bacteria, Epstein Barr virus and epigenetics in somatic mutations. There is evidence that ascorbic acid, phytochemicals and endogenous antioxidant systems can modify the risk of gastric cancer. Gastric juice ascorbate levels depend on dietary intake of ascorbic acid but can also be decreased by H. pylori infection, H. pylori CagA secretion, tobacco smoking, achlorhydria and chronic atrophic gastritis. Ascorbic acid may be protective against gastric cancer by its antioxidant effect in gastric cytoprotection, regenerating active vitamin E and glutathione, inhibiting endogenous N-nitrosation, reducing toxic effects of ingested nitrosodimethylamines and heterocyclic amines, and preventing H. pylori infection. The effectiveness of such cytoprotection is related to H. pylori strain virulence, particularly CagA expression. The role of vitamin C in epigenetic reprogramming in gastric cancer is still evolving. Other factors in conjunction with vitamin C also play a role in gastric carcinogenesis. Eradication of H. pylori may lead to recovery of vitamin C secretion by gastric epithelium and enable regression of premalignant gastric lesions, thereby interrupting the Correa cascade of gastric carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document