scholarly journals Melatonin prevents doxorubicin-induced cardiotoxicity through suppression of AMPKα2-dependent mitochondrial damage

2020 ◽  
Vol 52 (12) ◽  
pp. 2055-2068
Author(s):  
Goowon Yang ◽  
Minhyeok Song ◽  
Dang Hieu Hoang ◽  
Quynh Hoa Tran ◽  
Wonchae Choe ◽  
...  

AbstractThe clinical application of doxorubicin, one of the most effective anticancer drugs, has been limited due to its adverse effects, including cardiotoxicity. One of the hallmarks of doxorubicin-induced cytotoxicity is mitochondrial dysfunction. Despite intensive research over recent decades, there are no effective approaches for alleviating doxorubicin-induced cytotoxicity. Melatonin, a natural hormone that is primarily secreted by the pineal gland, is emerging as a promising adjuvant that protects against doxorubicin-induced cytotoxicity owing to its pharmaceutical effect of preserving mitochondrial integrity. However, the underlying mechanisms are far from completely understood. Here, we provide novel evidence that treatment of H9c2 cardiomyoblasts with doxorubicin strongly induced AMP-activated protein kinase α2 (AMPKα2), which translocated to mitochondria and interfered with their function and integrity, ultimately leading to cellular apoptosis. These phenomena were significantly blocked by melatonin treatment. The levels of AMPKα2 in murine hearts were tightly associated with cardiotoxicity in the context of doxorubicin and melatonin treatment. Therefore, our study suggests that the maintenance of mitochondrial integrity is a key factor in reducing doxorubicin-induced cytotoxicity and indicates that AMPKα2 may serve as a novel target in the design of cytoprotective combination therapies that include doxorubicin.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Xie ◽  
Xiaofeng Hang ◽  
Wensheng Xu ◽  
Jing Gu ◽  
Yuanjing Zhang ◽  
...  

Abstract Background Most of the biological functions of circular RNAs (circRNAs) and the potential underlying mechanisms in hepatocellular carcinoma (HCC) have not yet been discovered. Methods In this study, using circRNA expression data from HCC tumor tissues and adjacent tissues from the Gene Expression Omnibus database, we identified out differentially expressed circRNAs and verified them by qRT-PCT. Functional experiments were performed to evaluate the effects of circFAM13B in HCC in vitro and in vivo. Results We found that circFAM13B was the most significantly differentially expressed circRNA in HCC tissue. Subsequently, in vitro and in vivo studies also demonstrated that circFAM13B promoted the proliferation of HCC. Further studies revealed that circFAM13B, a sponge of miR-212, is involved in the regulation of E2F5 gene expression by competitively binding to miR-212, inhibits the activation of the P53 signalling pathway, and promotes the proliferation of HCC cells. Conclusions Our findings revealed the mechanism underlying the regulatory role played by circFAM13B, miR-212 and E2F5 in HCC. This study provides a new theoretical basis and novel target for the clinical prevention and treatment of HCC.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 634
Author(s):  
Anca Ungurianu ◽  
Anca Zanfirescu ◽  
Georgiana Nițulescu ◽  
Denisa Margină

Vitamin E, comprising tocopherols and tocotrienols, is mainly known as an antioxidant. The aim of this review is to summarize the molecular mechanisms and signaling pathways linked to inflammation and malignancy modulated by its vitamers. Preclinical reports highlighted a myriad of cellular effects like modulating the synthesis of pro-inflammatory molecules and oxidative stress response, inhibiting the NF-κB pathway, regulating cell cycle, and apoptosis. Furthermore, animal-based models have shown that these molecules affect the activity of various enzymes and signaling pathways, such as MAPK, PI3K/Akt/mTOR, JAK/STAT, and NF-κB, acting as the underlying mechanisms of their reported anti-inflammatory, neuroprotective, and anti-cancer effects. In clinical settings, not all of these were proven, with reports varying considerably. Nonetheless, vitamin E was shown to improve redox and inflammatory status in healthy, diabetic, and metabolic syndrome subjects. The anti-cancer effects were inconsistent, with both pro- and anti-malignant being reported. Regarding its neuroprotective properties, several studies have shown protective effects suggesting vitamin E as a potential prevention and therapeutic (as adjuvant) tool. However, source and dosage greatly influence the observed effects, with bioavailability seemingly a key factor in obtaining the preferred outcome. We conclude that this group of molecules presents exciting potential for the prevention and treatment of diseases with an inflammatory, redox, or malignant component.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Chen Li ◽  
Yan Wang ◽  
Yueqing Gong ◽  
Tengrui Zhang ◽  
Jiaqi Huang ◽  
...  

AbstractEnhancer of zeste homolog 2 inhibitors (EZH2i) have garnered increased attention owing to their anticancer activity by targeting EZH2, a well-known cancer-promoting factor. However, some lymphomas are resistant to EZH2i, and EZH2i treatment alone is ineffective in case of EZH2-overexpressing solid tumors. The anti-cancer efficacy of EZH2i may be improved through safe and effective combinations of these drugs with other treatment modalities. Preclinical evidence indicates that combining EZH2i with other therapies, such as immunotherapy, chemotherapy, targeted therapy, and endocrine therapy, has complementary or synergistic antitumor effects. Therefore, elucidating the underlying mechanisms of the individual constituents of the combination therapies is fundamental for their clinical application. In this review, we have summarized notable clinical trials and preclinical studies using EZH2i, their progress, and combinations of EZH2i with different therapeutic modalities, aiming to provide new insights for tumor treatment.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1025
Author(s):  
Ahmed Alalaiwe ◽  
Jia-You Fang ◽  
Hsien-Ju Lee ◽  
Chun-Hui Chiu ◽  
Ching-Yun Hsu

Curcumin is a known anti-adipogenic agent for alleviating obesity and related disorders. Comprehensive comparisons of the anti-adipogenic activity of curcumin with other curcuminoids is minimal. This study compared adipogenesis inhibition with curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC), and their underlying mechanisms. We differentiated 3T3-L1 cells in the presence of curcuminoids, to determine lipid accumulation and triglyceride (TG) production. The expression of adipogenic transcription factors and lipogenic proteins was analyzed by Western blot. A significant reduction in Oil red O (ORO) staining was observed in the cells treated with curcuminoids at 20 μM. Inhibition was increased in the order of curcumin < DMC < BDMC. A similar trend was observed in the detection of intracellular TG. Curcuminoids suppressed differentiation by downregulating the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), leading to the downregulation of the lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). AMP-activated protein kinase α (AMPKα) phosphorylation was also activated by BDMC. Curcuminoids reduced the release of proinflammatory cytokines and leptin in 3T3-L1 cells in a dose-dependent manner, with BDMC showing the greatest potency. BDMC at 20 μM significantly decreased leptin by 72% compared with differentiated controls. Molecular docking computation indicated that curcuminoids, despite having structural similarity, had different interaction positions to PPARγ, C/EBPα, and ACC. The docking profiles suggested a possible interaction of curcuminoids with C/EBPα and ACC, to directly inhibit their expression.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Yong Wang ◽  
Joshua E. Mendoza-Elias ◽  
Meirigeng Qi ◽  
Tricia A. Harvat ◽  
Sang Joon Ahn ◽  
...  

Islet transplantation is a promising therapy for type 1 diabetes mellitus; however, success rates in achieving both short- and long-term insulin independence are not consistent, due in part to inconsistent islet quality and quantity caused by the complex nature and multistep process of islet isolation and transplantation. Since the introduction of the Edmonton Protocol in 2000, more attention has been placed on preserving mitochondrial function as increasing evidences suggest that impaired mitochondrial integrity can adversely affect clinical outcomes. Some recent studies have demonstrated that it is possible to achieve islet cytoprotection by maintaining mitochondrial function and subsequently to improve islet transplantation outcomes. However, the benefits of mitoprotection in many cases are controversial and the underlying mechanisms are unclear. This article summarizes the recent progress associated with mitochondrial cytoprotection in each step of the islet isolation and transplantation process, as well as islet potency and viability assays based on the measurement of mitochondrial integrity. In addition, we briefly discuss immunosuppression side effects on islet graft function and how transplant site selection affects islet engraftment and clinical outcomes.


2019 ◽  
Vol 116 (7) ◽  
pp. 2662-2671 ◽  
Author(s):  
Chrysovalantis Voutouri ◽  
Nathaniel D. Kirkpatrick ◽  
Euiheon Chung ◽  
Fotios Mpekris ◽  
James W. Baish ◽  
...  

Cooption of the host vasculature is a strategy that some cancers use to sustain tumor progression without—or before—angiogenesis or in response to antiangiogenic therapy. Facilitated by certain growth factors, cooption can mediate tumor infiltration and confer resistance to antiangiogenic drugs. Unfortunately, this mode of tumor progression is difficult to target because the underlying mechanisms are not fully understood. Here, we analyzed the dynamics of vessel cooption during tumor progression and in response to antiangiogenic treatment in gliomas and brain metastases. We followed tumor evolution during escape from antiangiogenic treatment as cancer cells coopted, and apparently mechanically compressed, host vessels. To gain deeper understanding, we developed a mathematical model, which incorporated compression of coopted vessels, resulting in hypoxia and formation of new vessels by angiogenesis. Even if antiangiogenic therapy can block such secondary angiogenesis, the tumor can sustain itself by coopting existing vessels. Hence, tumor progression can only be stopped by combination therapies that judiciously block both angiogenesis and cooption. Furthermore, the model suggests that sequential blockade is likely to be more beneficial than simultaneous blockade.


2010 ◽  
Vol 138 (5) ◽  
pp. S-156-S-157
Author(s):  
Luca Antonioli ◽  
Matteo Fornai ◽  
Rocchina Colucci ◽  
Narcisa Ghisu ◽  
Marco Tuccori ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Dingping Yang ◽  
Dingwei Yang

The precise mechanisms underlying contrast-induced acute kidney injury (CI-AKI) are not well understood. Intracellular Ca2+overload is considered to be a key factor in CI-AKI. Voltage-dependent Ca2+channel (VDC) and Na+/Ca2+exchanger (NCX) system are the main pathways of intracellular Ca2+overload in pathological conditions. Here, we review the potential underlying mechanisms involved in CI-AKI and discuss the role of NCX-mediated intracellular Ca2+overload in the contrast media-induced renal tubular cell injury and renal hemodynamic disorder.


2021 ◽  
Author(s):  
Narawat Nuamnaichati ◽  
Warisara Parichatikanond ◽  
Supachoke Mangmool

Abstract GLP-1(7–36), a major active form of GLP-1 hormone, is rapidly cleaved by dipeptidyl peptidase-4 to generate a truncated metabolite, GLP-1(9–36) which has a low affinity for GLP-1 receptor (GLP-1R). GLP-1(7–36) has been shown to have protective effects on cardiovascular system through GLP-1R-dependent way. Nevertheless, the cardioprotective effects of GLP-1(9–36) have not fully understood. The present study investigated the effects of GLP-1(9–36), including its underlying mechanisms against oxidative stress and apoptosis in H9c2 cardiomyoblasts. Here, we reported that GLP-1(9–36) protects H9c2 cardiomyoblasts from hydrogen peroxide (H2O2)-induced oxidative stress by promoting the synthesis of antioxidant enzymes, glutathione peroxidase-1, catalase, and heme oxygenase-1. In addition, treatment with GLP-1(9–36) suppressed H2O2-induced apoptosis by attenuating caspase-3 activity and upregulating proapoptotic proteins, Bcl-2 and Bcl-xL. These protective effects of GLP-1(9–36) are attenuated by blockade of PI3K-mediated Akt phosphorylation and prevention of nitric oxide synthase (NOS)-induced NO production. Collectively, GLP-1(9–36) represents the potential therapeutic target for prevention of oxidative stress and apoptosis in the heart.


Sign in / Sign up

Export Citation Format

Share Document