scholarly journals PAX8-AS1 knockdown facilitates cell growth and inactivates autophagy in osteoblasts via the miR-1252-5p/GNB1 axis in osteoporosis

Author(s):  
Caiqiang Huang ◽  
Runguang Li ◽  
Changsheng Yang ◽  
Rui Ding ◽  
Qingchu Li ◽  
...  

AbstractOsteoporosis (OP) is the most common systematic bone disorder among elderly individuals worldwide. Long noncoding RNAs (lncRNAs) are involved in biological processes in various human diseases. It has been previously revealed that PAX8 antisense RNA 1 (PAX8-AS1) is upregulated in OP. However, its molecular mechanism in OP remains unclear. Therefore, we specifically designed this study to determine the specific role of PAX8-AS1 in OP. We first established a rat model of OP and then detected PAX8-AS1 expression in the rats with RT-qPCR. Next, to explore the biological function of PAX8-AS1 in osteoblasts, in vitro experiments, such as Cell Counting Kit-8 (CCK-8) assays, flow cytometry, western blotting and immunofluorescence (IF) staining, were conducted. Subsequently, we performed bioinformatic analysis and luciferase reporter assays to predict and identify the relationships between microRNA 1252-5p (miR-1252-5p) and both PAX8-AS1 and G protein subunit beta 1 (GNB1). Additionally, rescue assays in osteoblasts clarified the regulatory network of the PAX8-AS1/miR-1252-5p/GNB1 axis. Finally, in vivo loss-of-function studies verified the role of PAX8-AS1 in OP progression. The results illustrated that PAX8-AS1 was upregulated in the proximal tibia of OP rats. PAX8-AS1 silencing promoted the viability and inhibited the apoptosis and autophagy of osteoblasts. PAX8-AS1 interacted with miR-1252-5p. GNB1 was negatively regulated by miR-1252-5p. In addition, the impacts of PAX8-AS1 knockdown on osteoblasts were counteracted by GNB1 overexpression. PAX8-AS1 depletion suppressed OP progression by inhibiting apoptosis and autophagy in osteoblasts. In summary, PAX8-AS1 suppressed the viability and activated the autophagy of osteoblasts via the miR-1252-5p/GNB1 axis in OP.

Author(s):  
You Dong Liu ◽  
Xiao Peng Zhuang ◽  
Dong Lan Cai ◽  
Can Cao ◽  
Qi Sheng Gu ◽  
...  

Abstract Background MicroRNAs (miRNAs) are abundant in tumor-derived extracellular vesicles (EVs) and the functions of extracellular miRNA to recipient cells have been extensively studied with tumorigenesis. However, the role of miRNA in EV secretion from cancer cells remains unknown. Methods qPCR and bioinformatics analysis were applied for determining extracellular let-7a expression from CRC patient serum and cells. Nanosight particle tracking analysis was performed for investigating the effect of let-7a on EV secretion. Luciferase reporter assays was used for identifying targeted genes synaptosome-associated protein 23 (SNAP23). In vitro and in vivo assays were used for exploring the function of let-7a/SNAP23 axis in CRC progression. Bioenergetic assays were performed for investigating the role of let-7a/SNAP23 in cellular metabolic reprogramming. Results let-7a miRNA was elevated in serum EVs from CRC patients and was enriched in CRC cell-derived EVs. We determined that let-7a could suppress EV secretion directly targeting SNAP23. In turn, SNAP23 promotes EV secretion of let-7a to downregulate the intracellular let-7a expression. In addition, we found a novel mechanism of let-7a/SNAP23 axis by regulating mitochondrial oxidative phosphorylation (OXPHOS) through Lin28a/SDHA signaling pathway. Conclusions Let-7a plays an essential role in not only inhibiting EV secretion, but also suppressing OXPHOS through SNAP23, resulting in the suppression of CRC progression, suggesting that let-7a/SNAP23 axis could provide not only effective tumor biomarkers but also novel targets for tumor therapeutic strategies.


2020 ◽  
Author(s):  
Yubin Feng ◽  
shuang Hu ◽  
lanlan Li ◽  
xiaoqing Peng ◽  
Feihu Chen

Abstract BackgroundLong noncoding RNAs (lncRNAs) plays an important role in the development of physiology and pathology. Many reports have shown that LncRNA HOXA cluster antisense RNA 2 (HOXA-AS2) is a carcinogen and plays an important role in many tumors, but there are few reports on its role in Acute myeloid leukemia (AML). MethodsThe expression of HOXA-AS2 in AML cell line was detected by qRT-PCR. AML cases from the public database (GEPIA) were also included in this study. Cell counting kit-8 (CCK-8) assay, flow cytometry, immunofluorescence and Western blot were used to detect the role of HOXA-AS2 in AML cells. Luciferase reporter gene detection, RIP, RNA pull-down and RNA-ChIP detection were used to demonstrate the molecular biological mechanism of HOXA-AS2 in AML.ResultsOur results show that HOXA-AS2 was upregulated in AML cell lines and tissues, and the overexpression of HOXA-AS2 is negatively correlated with the survival of patients. Silencing HOXA-AS2 can inhibit the proliferation and induce differentiation of AML cells in vitro and in vivo. After overexpressing HOXA-AS2, it will show the opposite result. Moreover, more in-depth mechanism studies show that HOXA-AS2 exerts its carcinogenicity mainly by binding with the epigenetic inhibitor Enhancer of zeste homolog 2 (EZH2) and then inhibiting the expression of Large Tumor Suppressor 2 (LATS2). ConclusionsTaken together, our results highlight the important role of HOXA-AS2 in AML, suggesting that HOXA-AS2 may be an effective therapeutic target for patients with AML.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Nan Zhang ◽  
Zhongyi Li ◽  
Fuding Bai ◽  
Shigeng Zhang

Abstract Prostate cancer (PCa) is one of the major malignancies affecting males’ health around the world. Long noncoding RNAs (lncRNAs), a class of long transcripts, has been reported as essential regulators in tumorigenesis. IDH1 antisense RNA 1 (IDH1-AS1) is an lncRNA which can interact with genes to regulate the Warburg effect. However, function and mechanism of it in tumorigenesis of PCa remains unclear. Therefore, our current study focused on exploring the role of IDH1-AS1 in PCa tumor growth. At first, the expression of IDH1-AS1 was identified to be upregulated in PCa samples and cell lines. Mechanism associated with the upregulation of IDH1-AS1 was analyzed and demonstrated by mechanism experiments. The result suggested that PAX5 is the transcriptional activator of IDH1-AS1. Functionally, loss-of function assays revealed that silencing of IDH1-AS1 inhibited cell proliferation and induced cell apoptosis both in vitro and in vivo. Through microarray analysis and Gene ontology (GO) analysis, we determined that IDH1-AS1 can affect PCa cell autophagy by upregulating ATG5 expression. Mechanism investigation further validated that IDH1-AS1 posttranscriptionally regulated ATG5 expression by enhancing the mRNA stability of ATG5 or upregulating ATG5 by sequestering miR-216b-5p. Consequently, rescue assays demonstrated that IDH1-AS1 promoted proliferation and apoptosis in PCa via ATG5-induced autophagy. Taken together, our study elucidated the function and regulatory mechanism of IDH1-AS1, thus providing a novel biomarker for PCa.


Gut ◽  
2019 ◽  
Vol 69 (7) ◽  
pp. 1309-1321 ◽  
Author(s):  
Wen-Ping Xu ◽  
Jin-Pei Liu ◽  
Ji-Feng Feng ◽  
Chang-Peng Zhu ◽  
Yuan Yang ◽  
...  

ObjectiveAutophagy participates in the progression of hepatocellular carcinoma (HCC) and the resistance of HCC cells to sorafenib. We investigated the feasibility of sensitising HCC cells to sorafenib by modulating miR-541-initiated microRNA-autophagy axis.DesignGain- and loss-of-function assays were performed to evaluate the effects of miR-541 on the malignant properties and autophagy of human HCC cells. Autophagy was quantified by western blotting of LC3, transmission electron microscopy analyses and confocal microscopy scanning of mRFP-GFP-LC3 reporter construct. Luciferase reporter assays were conducted to confirm the targets of miR-541. HCC xenograft tumours were established to analyse the role of miR-541 in sorafenib-induced lethality.ResultsThe expression of miR-541 was downregulated in human HCC tissues and was associated with malignant clinicopathologic phenotypes, recurrence and survival of patients with HCC. miR-541 inhibited the growth, metastasis and autophagy of HCC cells both in vitro and in vivo. Prediction software and luciferase reporter assays identified autophagy-related gene 2A (ATG2A) and Ras-related protein Rab-1B (RAB1B) as the direct targets of miR-541. Consistent with the effects of the miR-541 mimic, inhibition of ATG2A or RAB1B suppressed the malignant phenotypes and autophagy of HCC cells. Furthermore, siATG2A and siRAB1B partially reversed the enhancement of the malignant properties and autophagy in HCC cells mediated by the miR-541 inhibitor. More interestingly, higher miR-541 expression predicted a better response to sorafenib treatment, and the combination of miR-541 and sorafenib further suppressed the growth of HCC cells in vivo compared with the single treatment.ConclusionsDysregulation of miR-541-ATG2A/RAB1B axis plays a critical role in patients’ responses to sorafenib treatment. Manipulation of this axis might benefit survival of patients with HCC, especially in the context of the highly pursued strategies to eliminate drug resistance.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Lili Zhou ◽  
Xiao Jia ◽  
Xiangzheng Yang

Abstract Background Previous studies indicated that lncRNA taurine upregulated gene 1 (TUG1) played essential roles in human cancers. This study aimed to investigate its function in infantile hemangioma (IH). Methods A total of 30 pairs of clinical infantile specimens were used in this study. The expression of TUG1 in IH tissues was assessed by quantitative reverse transcriptase PCR (qRT-PCR). Two short hairpin RNA targeting TUG1 (sh-TUG1-1 and sh-TUG1-2) were transfected into hemangioma-derived endothelial cells, HemECs, to block its expression. The effects of TUG1 on HemECs were evaluated by Cell Counting Kit-8 (CCK-8), colony formation assay, wound healing assay, and Transwell assay. The underlying molecular mechanism of TUG1 was investigated by Starbase prediction and luciferase reporter assay and further determined by loss- and gain-of-function approaches. In addition, the role of TUG1 on tumorigenesis of HemECs was confirmed in an in vivo mouse model. Results TUG1 was significantly upregulated in infant hemangioma tissues compared with normal adjacent subcutaneous tissues. The loss- and gain-of-function approaches indicated that TUG1 overexpression promoted proliferation, migration, and invasion of HemECs in vitro, and TUG1 knockdown inhibited the tumorigenesis of HemECs in vivo. Specifically, TUG1 could compete with IGFBP5 for miR137 binding. Rescue experiments further confirmed the role of the TUG1/miR137/IGFBP5 axis in HemECs. Conclusion TUG1 was closely associated with the progression of IH by regulating the miR-137/IGFBP5 axis, which might be a potential target for IH treatment.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yunyuan Zhang ◽  
Xuran Jing ◽  
Zhongzhu Li ◽  
Qingwu Tian ◽  
Qing Wang ◽  
...  

Abstract Background Bone morphogenetic protein 9 (BMP9) has been identified as a crucial inducer of osteoblastic differentiation in mesenchymal stem cells (MSCs). Although microRNAs (miRNAs) are known to play a role in MSC osteogenesis, the mechanisms of action of miRNAs in BMP9-induced osteoblastic differentiation remain poorly understood. Methods In this study, we investigate the possible role of the miR17-92 cluster in the BMP9-induced osteogenic differentiation of MSCs by using both in vitro and in vivo bone formation assays. Results The results show that miR-17, a member of the miR17-92 cluster, significantly impairs BMP9-induced osteogenic differentiation. This impairment is effectively rescued by a miR-17 sponge, an antagomiR sequence against miR-17. Using TargetScan and the 3′-untranslated region luciferase reporter assays, we show that the direct target of miR-17 is the retinoblastoma gene (RB1), a gene that is pivotal to osteoblastic differentiation. We also confirm that RB1 is essential for the miR-17 effects on osteogenesis. Conclusion Our results indicate that miR-17 expression impairs normal osteogenesis by downregulating RB1 expression and significantly inhibiting the function of BMP9.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Gang Luo ◽  
Guohao Li ◽  
Zhihua Wan ◽  
Yuanjie Zhang ◽  
Dong Liu ◽  
...  

Prostate cancer (PCa) refers to one of the most common tumors in male’s genitourinary system. Emerging research has confirmed that circRNAs play an important role in the occurrence and development of tumors. However, the correlation between circular RNA circITGA7 and PCa still remains unclear. Here, the role of circITGA7 in PCa was explored and the underlying mechanism was investigated as well. The circRNA expression profiles in PCa and the paracancerous tissues were established by high-throughput sequencing. The expression levels of circITGA7 in PCa tissues and cells were detected by qRT-PCR. Cell Counting Kit-8, colony formation, EdU, and flow cytometry assays were used to detect the effects of circITGA7 on PCa cell proliferation. To further explore the underlying mechanisms, bioinformatics analysis on downstream target genes was carried out. RNA immunoprecipitation and dual-luciferase reporter assays were used to verify the direct relationship between miR-370-3p and circITGA7 or P21CIP1. The present results demonstrated that circITGA7 was downregulated in PCa tissues and cells. Gain- or loss-of-function assays showed that circITGA7 inhibited the proliferation of PCa cells in vivo and in vitro. Mechanically, circITGA7 served as a sponge for miR-370-3p, and miR-370-3p could target P21CIP1 in PCa cells. The inhibition of cell proliferation induced by circITGA7 could be reversed by transfecting miR-370-3p mimic. Collectively, our data indicated that circITGA7 played an important role in inhibiting tumor proliferation in PCa and might be a potential therapeutic target.


2020 ◽  
Author(s):  
Guan-Bin Qi ◽  
Lei Li

Abstract Background: LINC00958, a newly identified lncRNA, has been reported to be closely linked to tumorigenesis in multiple cancers. However, its specific role in non-small cell lung cancer (NSCLC) remains unclear.Methods: The expression of LINC00958 was determined by RT-qPCR analysis. Cell proliferation and migration were evaluated by CCK-8 and transwell assays, respectively. Xenograft tumor models were established to examine the effect of LINC00958 on tumor growth in vivo. Luciferase reporter assays were performed to determine the interaction between LINC00958 and miR-204-3p and the interaction between miR-204-3p and KIF2A.Results: We found that LINC00958 was up-regulated in NSCLC tissues and cell lines. Down-regulation of LINC00958 inhibited cell proliferation and migration in vitro and suppressed tumor growth in vivo. Mechanically, we revealed that LINC00958 influenced NSCLC progression partly by sponging miR-204-3p and regulating KIF2A expression.Conclusions: Our study provided new insights into the role of LINC00958 as a promising prognostic biomarker and a therapeutic target for NSCLC.


2020 ◽  
Author(s):  
Jinyang Liu ◽  
Yaqin Zhu ◽  
Chunlin Ge

Abstract Background: The mortality and morbidity rates of pancreatic adenocarcinoma have been increasing over the past two decades, and an understanding of the mechanisms underlying pancreatic adenocarcinoma progression is urgently needed. The long non-coding RNA ZFAS1 has been demonstrated to be an oncogene in some cancers, but its function and mechanism in pancreatic adenocarcinoma remain unclear.Methods: The ZFAS1 expression level in pancreatic adenocarcinoma was predicted by bioinformatic analysis, and the expression level of ZFAS1 in pancreatic adenocarcinoma tissue samples and cell lines was further investigated by quantitative real-time PCR and in situ hybridization. The functions of ZFAS1 in pancreatic adenocarcinoma in vitro and in vivo were investigated by further bioinformatic analysis. Dual-luciferase reporter assays were used to investigate the binding of ZFAS1/miR-3924 and miR-3924/ROCK2, and rescue assays were performed to further investigate the underlying mechanism.Results: ZFAS1 overexpression in pancreatic adenocarcinoma was predicted and experimentally verified. ZFAS1 silencing inhibited pancreatic adenocarcinoma metastasis in vitro and in vivo. The competing endogenous RNA mechanism of ZFAS1 was also identified.Conclusions: Our results demonstrated the promotive effect of ZFAS1 on pancreatic adenocarcinoma metastasis and suggested its potential role as a novel regulator of ROCK2.


Author(s):  
Wei Wang ◽  
Nian Liu ◽  
Li Xin ◽  
Yanfei Ruan ◽  
Xin Du ◽  
...  

AbstractHeart often undergoes mal-remodeling and hypertrophic growth in response to pathological stress. MiRNAs can regulate the cardiac function and participate in the regulation of cardiac hypertrophy. The present study aims at identifying the role of miR-296-5p in cardiac hypertrophy and further the underlying mechanism in hypertrophic cascades. Mice with cardiac hypertrophy were established by transverse aortic constriction (TAC). Cardiac hypertrophy in cardiomyocytes was induced by angiotensin II. Expression of miR-296-5p and its target gene CACNG6 was examined in cardiomyocytes transfected by miRNA. The expression of miR-296-5p was upregulated in mice with TAC surgery. The inhibition of miR-296-5p attenuated cardiac hypertrophy both in vitro and in vivo. And dual-luciferase reporter assays showed CACNG6 was the direct target of miR-296-5p, which modulated the expression of calcium signaling. MiR-296-5p was found to aggravate cardiac hypertrophy by targeting CACNG6, which suggests inhibition of miR-296-5p might have clinical potential to suppress cardiac hypertrophy and heart failure.


Sign in / Sign up

Export Citation Format

Share Document