scholarly journals Activation of mitogen-activated protein kinases in satellite glial cells of the trigeminal ganglion contributes to substance P-mediated inflammatory pain

Author(s):  
Yanyan Zhang ◽  
Ning Song ◽  
Fei Liu ◽  
Jiu Lin ◽  
Mengke Liu ◽  
...  

Abstract Inflammatory orofacial pain, in which substance P (SP) plays an important role, is closely related to the cross-talk between trigeminal ganglion (TG) neurons and satellite glial cells (SGCs). SGC activation is emerging as the key mechanism underlying inflammatory pain through different signalling mechanisms, including glial fibrillary acidic protein (GFAP) activation, phosphorylation of mitogen-activated protein kinase (MAPK) signalling pathways, and cytokine upregulation. However, in the TG, the mechanism underlying SP-mediated orofacial pain generated by SGCs is largely unknown. In this study, we investigated whether SP is involved in inflammatory orofacial pain by upregulating interleukin (IL)-1β and tumour necrosis factor (TNF)-α from SGCs, and we explored whether MAPK signalling pathways mediate the pain process. In the present study, complete Freund’s adjuvant (CFA) was injected into the whisker pad of rats to induce an inflammatory model in vivo. SP was administered to SGC cultures in vitro to confirm the effect of SP. Facial expression analysis showed that pre-injection of L703,606 (an NK-1 receptor antagonist), U0126 (an inhibitor of MAPK/extracellular signal-regulated kinase [ERK] kinase [MEK] 1/2), and SB203580 (an inhibitor of P38) into the TG to induce targeted prevention of the activation of the NK-1 receptor and the phosphorylation of MAPKs significantly suppressed CFA-induced inflammatory allodynia. In addition, SP promoted SGC activation, which was proven by increased GFAP, p-MAPKs, IL-1β and TNF-α in SGCs under inflammatory conditions. Moreover, the increase in IL-1β and TNF-α was suppressed by L703, 606, U0126 and SB203580 in vivo and in vitro. These present findings suggested that SP, released from TG neurons, activated SGCs through the ERK1/2 and P38 pathways and promoted the production of IL-1β and TNF-α from SGCs, contributing to inflammatory orofacial pain associated with peripheral sensitization.

Reproduction ◽  
2013 ◽  
Vol 146 (6) ◽  
pp. 647-658 ◽  
Author(s):  
María Paula Di Yorio ◽  
María Guillermina Bilbao ◽  
Ana María Biagini-Majorel ◽  
Alicia Graciela Faletti

Leptin, a protein secreted by different tissues, is able to exert both stimulatory and inhibitory effects on the ovulatory process. Thus, we investigated whether these opposite effects involve changes in the ovarian signalling pathways in response to different levels of leptin. To this end, we performed both in vivo and in vitro assays using immature rats primed with gonadotrophins to induce ovulation. The acute treatment with leptin, which inhibits the ovulatory process, caused a significant decrease in the phosphorylation of both STAT3 and ERK1/2 and a simultaneous increase in suppressors of cytokine signalling 3 (SOCS3) protein. However, daily administration of a low dose of leptin, which induces the ovulatory process, showed increased phosphorylation of both STAT3 and ERK1/2 and a decreased expression of SOCS3 protein. Using ovarian explant cultures, we also found that leptin was able to activate both STAT3 and ERK1/2 at 10 ng/ml but only STAT3 at 300–500 ng/ml. In addition, at 100–300 ng/ml, leptin increased protein but not mRNA expression of SOCS3. The addition of specific inhibitors of JAK/STAT and MAPK signalling pathways suppressed both the increase and the decrease in leptin-induced progesterone secretion. These results indicate that i) different levels of leptin are able to regulate STAT3, ERK1/2 and SOCS3 at both intra- and extra-ovarian level and that ii) the dual action of leptin on steroidogenesis seems to occur, at least in part, through both the ERK and STAT cascades.


1996 ◽  
Vol 351 (1336) ◽  
pp. 135-142 ◽  

Mammalian cells respond to their immediate environment by inducing signal transduction cascades that regulate metabolism, secretion and gene expression. Several of these signalling pathways are structurally and organizationally related insofar as they require activation of a protein-serine kinase via it’s phosphorylation on tyrosine and threonine; the archetype being mitogen-activated protein kinase (MAPK) which responds primarily to mitogenic stimuli via Ras. In contrast, two more recently identified cascades are responsive to cellular stresses such as heat, inflammatory cytokines, ischaemia and metabolic poisons. The recent identification of the components of these pathways has allowed manipulation of the stress-responsive pathways and evaluation of their physiological roles. These studies reveal a high degree of independence between the pathways not apparent from in vitro studies. Manipulation of the pathways in vivo will likely result in novel therapies for inflammatory disease and reperfusion injury.


2020 ◽  
Author(s):  
Hanna Gałgańska ◽  
Łukasz Gałgański

AbstractThe amount of CO2 in the atmosphere is increasing continuously in the industrial era, posing a threat to the ecological balance on Earth. There are two ways to reduce elevated CO2 concentrations ([CO2]high): reducing human emissions or increasing their absorption by oceans and plants. However, in response to [CO2]high, plants diminish gas exchange and CO2 uptake by closing stomata. Surprisingly, we do not know how plants sense CO2 in their environment, and the basic mechanisms of the plant response to [CO2]high are very poorly understood. Here, we show that mitogen-activated protein kinases (MAPKs) are plant CO2 receptors. We demonstrate that MPK4, a prominent MAPK that is known to be involved in the stomatal response to [CO2]high1–3, is capable of binding CO2 and is directly activated by a very low increase in [CO2] in vivo and in vitro. Unlike MPK4 activation by infections4, stress and hormones within known MAPK signalling cascades, [CO2]high-induced MPK4 activation is independent of the upstream regulators MKK1 and MKK2. Moreover, once activated, MPK4 is prone to inactivation by bicarbonate. The identification of stress-responsive MPK4 as a CO2 receptor sheds new light on the integration of various environmental signals in guard cells, setting up MPK4 as the main hub regulating CO2 availability for photosynthesis. This result could help to find new ways to increase CO2 uptake by plants.


2001 ◽  
Vol 281 (4) ◽  
pp. C1096-C1105 ◽  
Author(s):  
Tadayuki Oshima ◽  
Kevin P. Pavlick ◽  
F. Stephen Laroux ◽  
S. Kris Verma ◽  
Paul Jordan ◽  
...  

Mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is a 60-kDa endothelial cell adhesion glycoprotein that regulates lymphocyte trafficking to Peyer's patches and lymph nodes. Although it is widely agreed that MAdCAM-1 induction is involved in chronic gut inflammation, few studies have investigated regulation of MAdCAM-1 expression. We used two endothelial lines [bEND.3 (brain) and SVEC (high endothelium)] to study the signal paths that regulate MAdCAM-1 expression in response to tumor necrosis factor (TNF)-α using RT-PCR, blotting, adhesion, and immunofluorescence. TNF-α induced both MAdCAM-1 mRNA and protein in a dose- and time-dependent manner. This induction was tyrosine kinase (TK), p42/44, p38 mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB/poly-ADP ribose polymerase (PARP) dependent. Because MAdCAM-1 is regulated via MAPKs, we examined mitogen/extracellular signal-regulated kinase (MEK)-1/2 activation in SVEC. We found that MEK-1/2 is activated by TNF-α within minutes and is dependent on TK and p42/44 MAPKs. Similarly, TNF-α activated NF-κB through TK, p42/44, p38 MAPKs, and PARP pathways in SVEC cells. MAdCAM-1 was also shown to be frequently distributed to endothelial junctions both in vitro and in vivo. Cytokines like TNF-α stimulate MAdCAM-1 in high endothelium via TK, p38, p42/22 MAPKs, and NF-κB/PARP. MAdCAM-1 expression requires NF-κB translocation through both direct p42/44 and indirect p38 MAPK pathways in high endothelial cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marisa Nacke ◽  
Emma Sandilands ◽  
Konstantina Nikolatou ◽  
Álvaro Román-Fernández ◽  
Susan Mason ◽  
...  

AbstractThe signalling pathways underpinning cell growth and invasion use overlapping components, yet how mutually exclusive cellular responses occur is unclear. Here, we report development of 3-Dimensional culture analyses to separately quantify growth and invasion. We identify that alternate variants of IQSEC1, an ARF GTPase Exchange Factor, act as switches to promote invasion over growth by controlling phosphoinositide metabolism. All IQSEC1 variants activate ARF5- and ARF6-dependent PIP5-kinase to promote PI(3,4,5)P3-AKT signalling and growth. In contrast, select pro-invasive IQSEC1 variants promote PI(3,4,5)P3 production to form invasion-driving protrusions. Inhibition of IQSEC1 attenuates invasion in vitro and metastasis in vivo. Induction of pro-invasive IQSEC1 variants and elevated IQSEC1 expression occurs in a number of tumour types and is associated with higher-grade metastatic cancer, activation of PI(3,4,5)P3 signalling, and predicts long-term poor outcome across multiple cancers. IQSEC1-regulated phosphoinositide metabolism therefore is a switch to induce invasion over growth in response to the same external signal. Targeting IQSEC1 as the central regulator of this switch may represent a therapeutic vulnerability to stop metastasis.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


Author(s):  
Hongli Zhou ◽  
Minyu Zhou ◽  
Yue Hu ◽  
Yanin Limpanon ◽  
Yubin Ma ◽  
...  

AbstractAngiostrongylus cantonensis (AC) can cause severe eosinophilic meningitis or encephalitis in non-permissive hosts accompanied by apoptosis and necroptosis of brain cells. However, the explicit underlying molecular basis of apoptosis and necroptosis upon AC infection has not yet been elucidated. To determine the specific pathways of apoptosis and necroptosis upon AC infection, gene set enrichment analysis (GSEA) and protein–protein interaction (PPI) analysis for gene expression microarray (accession number: GSE159486) of mouse brain infected by AC revealed that TNF-α likely played a central role in the apoptosis and necroptosis in the context of AC infection, which was further confirmed via an in vivo rescue assay after treating with TNF-α inhibitor. The signalling axes involved in apoptosis and necroptosis were investigated via immunoprecipitation and immunoblotting. Immunofluorescence was used to identify the specific cells that underwent apoptosis or necroptosis. The results showed that TNF-α induced apoptosis of astrocytes through the RIP1/FADD/Caspase-8 axis and induced necroptosis of neurons by the RIP3/MLKL signalling pathway. In addition, in vitro assay revealed that TNF-α secretion by microglia increased upon LSA stimulation and caused necroptosis of neurons. The present study provided the first evidence that TNF-α was secreted by microglia stimulated by AC infection, which caused cell death via parallel pathways of astrocyte apoptosis (mediated by the RIP1/FADD/caspase-8 axis) and neuron necroptosis (driven by the RIP3/MLKL complex). Our research comprehensively elucidated the mechanism of cell death after AC infection and provided new insight into targeting TNF-α signalling as a therapeutic strategy for CNS injury.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


2020 ◽  
Vol 34 ◽  
pp. 205873842097489
Author(s):  
Jiang Wang ◽  
Bo Wang ◽  
Xin Lv ◽  
Yingjie Wang

Periodontitis is an inflammatory disease caused by host immune response, resulting in a loss of periodontium and alveolar bone. Immune cells, such as T cells and macrophages, play a critical role in the periodontitis onset. Halofuginone, a natural quinazolinone alkaloid, has been shown to possess anti-fibrosis, anti-cancer, and immunomodulatory properties. However, the effect of halofuginone on periodontitis has never been reported. In this study, a ligature-induced mice model of periodontitis was applied to investigate the potential beneficial effect of halofuginone on periodontitis. We demonstrated that the administration of halofuginone significantly reduced the expression levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in vivo, and markedly suppressed immune cell infiltration into the infected sites. Furthermore, we also observed that halofuginone treatment blocked the T-helper 17 (Th17) cell differentiation in vivo and in vitro. We demonstrated for the first time that halofuginone alleviated the onset of periodontitis through reducing immune responses.


Sign in / Sign up

Export Citation Format

Share Document