scholarly journals Synaptic control of DNA methylation involves activity-dependent degradation of DNMT3A1 in the nucleus

2020 ◽  
Vol 45 (12) ◽  
pp. 2120-2130 ◽  
Author(s):  
Gonca Bayraktar ◽  
PingAn Yuanxiang ◽  
Alessandro D. Confettura ◽  
Guilherme M. Gomes ◽  
Syed A. Raza ◽  
...  

Abstract DNA methylation is a crucial epigenetic mark for activity-dependent gene expression in neurons. Very little is known about how synaptic signals impact promoter methylation in neuronal nuclei. In this study we show that protein levels of the principal de novo DNA-methyltransferase in neurons, DNMT3A1, are tightly controlled by activation of N-methyl-D-aspartate receptors (NMDAR) containing the GluN2A subunit. Interestingly, synaptic NMDARs drive degradation of the methyltransferase in a neddylation-dependent manner. Inhibition of neddylation, the conjugation of the small ubiquitin-like protein NEDD8 to lysine residues, interrupts degradation of DNMT3A1. This results in deficits in promoter methylation of activity-dependent genes, as well as synaptic plasticity and memory formation. In turn, the underlying molecular pathway is triggered by the induction of synaptic plasticity and in response to object location learning. Collectively, the data show that plasticity-relevant signals from GluN2A-containing NMDARs control activity-dependent DNA-methylation involved in memory formation.

2019 ◽  
Author(s):  
Gonca Bayraktar ◽  
PingAn Yuanxiang ◽  
Guilherme M Gomes ◽  
Aessandro D Confettura ◽  
Syed A Raza ◽  
...  

AbstractDNA-methylation is a crucial epigenetic mark for activity-dependent gene expression in neurons. Very little is known how synaptic signals impact promoter methylation in neuronal nuclei. In this study we show that protein levels of the principal de novo DNA-methyltransferase in neurons, DNMT3a1, are tightly controlled by activation of N-methyl-D-aspartate receptors (NMDAR) containing the GluN2A subunit. Interestingly, synaptic NMDAR drive degradation of the methyltransferase in a neddylation-dependent manner. Inhibition of neddylation, the conjugation of the small ubiquitin-like protein NEDD8 to lysine residues, interrupts degradation of DNMT3a1 and results in deficits of promoter methylation of activity-dependent genes, synaptic plasticity as well as memory formation. In turn, the underlying molecular pathway is triggered by the induction of synaptic plasticity and in response to object location learning. Collectively the data show that GluN2A containing NMDAR control synapse-to-nucleus signaling that links plasticity-relevant signals to activity-dependent DNA-methylation involved in memory formation.


2021 ◽  
Author(s):  
Jean S Fain ◽  
Axelle Loriot ◽  
Anna Diacofotaki ◽  
Aurelie Van Tongelen ◽  
Charles De Smet

DNA methylation is an epigenetic mark associated with gene repression. It is now well established that tumor development involves alterations in DNA methylation patterns, which include both gains (hypermethylation) and losses (hypomethylation) of methylation marks in different genomic regions. The mechanisms underlying these two opposite, yet co-existing, alterations in tumors remain unclear. While studying the human MAGEA6/GABRA3 gene locus, we observed that DNA hypomethylation in tumor cells can lead to the activation of a long transcript (CT-GABRA3) that overlaps downstream promoters (GABRQ and GABRA3) and triggers their hypermethylation. Overlapped promoters displayed increases in H3K36me3, a histone mark known to be deposited during progression of the transcription machinery and to stimulate de novo DNA methylation. Consistent with such a processive mechanism, increases in H3K36me3 and DNA methylation were observed over the entire region covered by the CT-GABRA3 overlapping transcript. Importantly, experimental induction of CT-GABRA3 by depletion of DNMT1 DNA methyltransferase, resulted in a similar pattern of increased DNA methylation in the MAGEA6/GABRA3 locus. Bioinformatics analyses in lung cancer datasets identified other genomic loci displaying this process of coupled DNA hypo- and hypermethylation. In several of these loci, DNA hypermethylation affected tumor suppressor genes, e.g. RERG and PTPRO. Together, our work reveals that focal DNA hypomethylation in tumors can indirectly contribute to hypermethylation of nearby promoters through activation of overlapping transcription, and establishes therefore an unsuspected connection between these two opposite epigenetic alterations.


2020 ◽  
Vol 48 (21) ◽  
pp. 12116-12134
Author(s):  
Mengmeng Han ◽  
Jialun Li ◽  
Yaqiang Cao ◽  
Yuanyong Huang ◽  
Wen Li ◽  
...  

Abstract LSH, a SNF2 family DNA helicase, is a key regulator of DNA methylation in mammals. How LSH facilitates DNA methylation is not well defined. While previous studies with mouse embryonic stem cells (mESc) and fibroblasts (MEFs) derived from Lsh knockout mice have revealed a role of Lsh in de novo DNA methylation by Dnmt3a/3b, here we report that LSH contributes to DNA methylation in various cell lines primarily by promoting DNA methylation by DNMT1. We show that loss of LSH has a much bigger effect in DNA methylation than loss of DNMT3A and DNMT3B. Mechanistically, we demonstrate that LSH interacts with UHRF1 but not DNMT1 and facilitates UHRF1 chromatin association and UHRF1-catalyzed histone H3 ubiquitination in an ATPase activity-dependent manner, which in turn promotes DNMT1 recruitment to replication fork and DNA methylation. Notably, UHRF1 also enhances LSH association with the replication fork. Thus, our study identifies LSH as an essential factor for DNA methylation by DNMT1 and provides novel insight into how a feed-forward loop between LSH and UHRF1 facilitates DNMT1-mediated maintenance of DNA methylation in chromatin.


2020 ◽  
Vol 21 (10) ◽  
pp. 3634
Author(s):  
Rutger A. F. Gjaltema ◽  
Désirée Goubert ◽  
Christian Huisman ◽  
Consuelo del Pilar García Tobilla ◽  
Mihály Koncz ◽  
...  

Epigenetic editing, an emerging technique used for the modulation of gene expression in mammalian cells, is a promising strategy to correct disease-related gene expression. Although epigenetic reprogramming results in sustained transcriptional modulation in several in vivo models, further studies are needed to develop this approach into a straightforward technology for effective and specific interventions. Important goals of current research efforts are understanding the context-dependency of successful epigenetic editing and finding the most effective epigenetic effector(s) for specific tasks. Here we tested whether the fibrosis- and cancer-associated PLOD2 gene can be repressed by the DNA methyltransferase M.SssI, or by the non-catalytic Krüppel associated box (KRAB) repressor directed to the PLOD2 promoter via zinc finger- or CRISPR-dCas9-mediated targeting. M.SssI fusions induced de novo DNA methylation, changed histone modifications in a context-dependent manner, and led to 50%–70% reduction in PLOD2 expression in fibrotic fibroblasts and in MDA-MB-231 cancer cells. Targeting KRAB to PLOD2 resulted in the deposition of repressive histone modifications without DNA methylation and in almost complete PLOD2 silencing. Interestingly, both long-term TGFβ1-induced, as well as unstimulated PLOD2 expression, was completely repressed by KRAB, while M.SssI only prevented the TGFβ1-induced PLOD2 expression. Targeting transiently expressed dCas9-KRAB resulted in sustained PLOD2 repression in HEK293T and MCF-7 cells. Together, these findings point to KRAB outperforming DNA methylation as a small potent targeting epigenetic effector for silencing TGFβ1-induced and uninduced PLOD2 expression.


2009 ◽  
Vol 106 (37) ◽  
pp. 15843-15848 ◽  
Author(s):  
Qian Zhang ◽  
Hong Y. Wang ◽  
Gauri Bhutani ◽  
Xiaobin Liu ◽  
Michele Paessler ◽  
...  

Here we report that T-cell lymphomas characterized by the expression of anaplastic lymphoma kinase (ALK+ TCL) fail to express the TNFα and frequently display DNA methylation of the TNFα gene promoter. While only a subset of the ALK+ TCL-derived cell lines showed a high degree of the promoter methylation, all 6 showed low to nondetectable expression of the TNFα mRNA, and none expressed the TNFα protein. All 14 ALK+ TCL tissue samples examined displayed some degree of the TNFα promoter methylation, which was the most prominent in the distal portion of the the promoter. Treatment with a DNA methyltransferase inhibitor, 5′-aza-2′-deoxy-cytidine (5-ADC), reversed the promoter methylation and led to the expression of TNFα mRNA and protein. Furthermore, in vitro DNA methylation of the promoter impaired its transcriptional activity in the luciferase reporter assay. This impairment was seen even if only either distal or proximal portion were methylated, with methylation of the former exerting a more profound inhibitory effect. Notably, the ALK+ TCL cell lines uniformly expressed the type 1 TNFα receptor (TNF-R1) protein known to transduce the TNFα-induced pro-apoptotic signals. Moreover, exogeneous TNFα inhibited growth of the ALK+ TCL cell lines in a dose-dependent manner and induced activation of the members of the cell apoptotic pathway: Caspase 8 and caspase 3. These findings provide additional rationale for the therapeutic inhibition of DNA methyltransferases in ALK+ TCL. They also suggest that treatment with TNFα may be highly effective in this type of lymphoma.


2017 ◽  
Vol 24 (2) ◽  
pp. 171-185 ◽  
Author(s):  
Gonca Bayraktar ◽  
Michael R. Kreutz

DNMT3A and 3B are the main de novo DNA methyltransferases (DNMTs) in the brain that introduce new methylation marks to non-methylated DNA in postmitotic neurons. DNA methylation is a key epigenetic mark that is known to regulate important cellular processes in neuronal development and brain plasticity. Accumulating evidence disclosed rapid and dynamic changes in DNA methylation of plasticity-relevant genes that are important for learning and memory formation. To understand how DNMTs contribute to brain function and how they are regulated by neuronal activity is a prerequisite for a deeper appreciation of activity-dependent gene expression in health and disease. This review discusses the functional role of de novo methyltransferases and in particular DNMT3A1 in the adult brain with special emphasis on synaptic plasticity, memory formation, and brain disorders.


Genes ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 617 ◽  
Author(s):  
Marthe Laisné ◽  
Nikhil Gupta ◽  
Olivier Kirsh ◽  
Sriharsa Pradhan ◽  
Pierre-Antoine Defossez

DNA methylation is an essential epigenetic mark in mammals. The proper distribution of this mark depends on accurate deposition and maintenance mechanisms, and underpins its functional role. This, in turn, depends on the precise recruitment and activation of de novo and maintenance DNA methyltransferases (DNMTs). In this review, we discuss mechanisms of recruitment of DNMTs by transcription factors and chromatin modifiers—and by RNA—and place these mechanisms in the context of biologically meaningful epigenetic events. We present hypotheses and speculations for future research, and underline the fundamental and practical benefits of better understanding the mechanisms that govern the recruitment of DNMTs.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262277
Author(s):  
Takamasa Ito ◽  
Musashi Kubiura-Ichimaru ◽  
Yuri Murakami ◽  
Aaron B. Bogutz ◽  
Louis Lefebvre ◽  
...  

DNA methylation (DNAme; 5-methylcytosine, 5mC) plays an essential role in mammalian development, and the 5mC profile is regulated by a balance of opposing enzymatic activities: DNA methyltransferases (DNMTs) and Ten-eleven translocation dioxygenases (TETs). In mouse embryonic stem cells (ESCs), de novo DNAme by DNMT3 family enzymes, demethylation by the TET-mediated conversion of 5mC to 5-hydroxymethylation (5hmC), and maintenance of the remaining DNAme by DNMT1 are actively repeated throughout cell cycles, dynamically forming a constant 5mC profile. Nevertheless, the detailed mechanism and physiological significance of this active cyclic DNA modification in mouse ESCs remain unclear. Here by visualizing the localization of DNA modifications on metaphase chromosomes and comparing whole-genome methylation profiles before and after the mid-S phase in ESCs lacking Dnmt1 (1KO ESCs), we demonstrated that in 1KO ESCs, DNMT3-mediated remethylation was interrupted during and after DNA replication. This results in a marked asymmetry in the distribution of 5hmC between sister chromatids at mitosis, with one chromatid being almost no 5hmC. When introduced in 1KO ESCs, the catalytically inactive form of DNMT1 (DNMT1CI) induced an increase in DNAme in pericentric heterochromatin and the DNAme-independent repression of IAPEz, a retrotransposon family, in 1KO ESCs. However, DNMT1CI could not restore the ability of DNMT3 to methylate unmodified dsDNA de novo in S phase in 1KO ESCs. Furthermore, during in vitro differentiation into epiblasts, 1KO ESCs expressing DNMT1CI showed an even stronger tendency to differentiate into the primitive endoderm than 1KO ESCs and were readily reprogrammed into the primitive streak via an epiblast-like cell state, reconfirming the importance of DNMT1 enzymatic activity at the onset of epiblast differentiation. These results indicate a novel function of DNMT1, in which DNMT1 actively regulates the timing and genomic targets of de novo methylation by DNMT3 in an enzymatic activity-dependent and independent manner, respectively.


Nature Plants ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 184-197
Author(s):  
Jianjun Jiang ◽  
Jie Liu ◽  
Dean Sanders ◽  
Shuiming Qian ◽  
Wendan Ren ◽  
...  

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Jessilyn Dunn ◽  
Haiwei Qiu ◽  
Soyeon Kim ◽  
Daudi Jjingo ◽  
Ryan Hoffman ◽  
...  

Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow (d-flow), which alters gene expression, endothelial function, and atherosclerosis. Here, we show that d-flow regulates genome-wide DNA methylation patterns in a DNA methyltransferase (DNMT)-dependent manner. We found that d-flow induced expression of DNMT1, but not DNMT3a or DNMT3b, in mouse arterial endothelium in vivo and in cultured endothelial cells by oscillatory shear (OS) compared to unidirectional laminar shear in vitro. The DNMT inhibitor 5-Aza-2’deoxycytidine (5Aza) or DNMT1 siRNA significantly reduced OS-induced endothelial inflammation. Moreover, 5Aza reduced lesion formation in two atherosclerosis models using ApoE-/- mice (western diet for 3 months and the partial carotid ligation model with western diet for 3 weeks). To identify the 5Aza mechanisms, we conducted two genome-wide studies: reduced representation bisulfite sequencing (RRBS) and transcript microarray using endothelial-enriched gDNA and RNA, respectively, obtained from the partially-ligated left common carotid artery (LCA exposed to d-flow) and the right contralateral control (RCA exposed to s-flow) of mice treated with 5Aza or vehicle. D-flow induced DNA hypermethylation in 421 gene promoters, which was significantly prevented by 5Aza in 335 genes. Systems biological analyses using the RRBS and the transcriptome data revealed 11 mechanosensitive genes whose promoters were hypermethylated by d-flow but rescued by 5Aza treatment. Of those, five genes contain hypermethylated cAMP-response-elements in their promoters, including the transcription factors HoxA5 and Klf3. Their methylation status could serve as a mechanosensitive master switch in endothelial gene expression. Our results demonstrate that d-flow controls epigenomic DNA methylation patterns in a DNMT-dependent manner, which in turn alters endothelial gene expression and induces atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document