scholarly journals B7–H3 regulates osteoclast differentiation via type I interferon-dependent IDO induction

2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Younseo Oh ◽  
Robin Park ◽  
So Yeon Kim ◽  
Sung-ho Park ◽  
Sungsin Jo ◽  
...  

AbstractWhile their function, as immune checkpoint molecules, is well known, B7-family proteins also function as regulatory molecules in bone remodeling. B7–H3 is a receptor ligand of the B7 family that functions primarily as a negative immune checkpoint. While the regulatory function of B7–H3 in osteoblast differentiation has been established, its role in osteoclast differentiation remains unclear. Here we show that B7–H3 is highly expressed in mature osteoclasts and that B7–H3 deficiency leads to the inhibition of osteoclastogenesis in human osteoclast precursors (OCPs). High-throughput transcriptomic analyses reveal that B7–H3 inhibition upregulates IFN signaling as well as IFN-inducible genes, including IDO. Pharmacological inhibition of type-I IFN and IDO knockdown leads to reversal of B7–H3-deficiency-mediated osteoclastogenesis suppression. Although synovial-fluid macrophages from rheumatoid-arthritis patients express B7–H3, inhibition of B7–H3 does not affect their osteoclastogenesis. Thus, our findings highlight B7–H3 as a physiologic positive regulator of osteoclast differentiation and implicate type-I IFN–IDO signaling as its downstream mechanism.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Leixi Xue ◽  
Lei Liu ◽  
Jun Huang ◽  
Jian Wen ◽  
Ru Yang ◽  
...  

Type I interferon (IFN) plays a central role in pathogenesis of systemic lupus erythematosus (SLE); tumor necrosis factor-like weak inducer of apoptosis (TWEAK) has been associated with a pathogenic role in lupus nephritis (LN). Thus we investigated whether TWEAK could induce the activation of type I IFN pathway in LN. We examined this in patient-derived peripheral blood mononuclear cells (PBMCs) as well as MRL/lpr mice, a murine LN model. Relative to the control cohorts, MRL/lpr mice showed severe histological changes, high index levels of renal damage, and elevated expression of type I IFN-inducible genes. After shRNA suppression of TWEAK, we observed that renal damage was significantly attenuated and expression of type I IFN-inducible genes was reduced in MRL/lpr mice. In parallel, siRNA of TWEAK also significantly reduced the expression of type I IFN-inducible genes in PBMCs relative to control transfections. In PBMCs, TWEAK stimulation also led to expression of type I IFN-inducible genes. Our results illustrate a novel regulatory role of TWEAK, in which its activity positively regulates type I IFN pathway in LN based on preclinical models. Our findings suggest TWEAK could act as a critical target in preventing renal damage in patients with LN.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Isabella Batten ◽  
Mark W. Robinson ◽  
Arthur White ◽  
Cathal Walsh ◽  
Barbara Fazekas ◽  
...  

AbstractType I interferon (IFN) dysregulation is a major contributory factor in the development of several autoimmune diseases, termed type I interferonopathies, and is thought to be the pathogenic link with chronic inflammation in these conditions. Anti-neutrophil cytoplasmic antibody (ANCA)-Associated Vasculitis (AAV) is an autoimmune disease characterised by necrotising inflammation of small blood vessels. The underlying biology of AAV is not well understood, however several studies have noted abnormalities in type I IFN responses. We hypothesised that type I IFN responses are systemically dysregulated in AAV, consistent with features of a type I interferonopathy. To investigate this, we measured the expression of seven interferon regulated genes (IRGs) (ISG15, SIGLEC1, STAT1, RSAD2, IFI27, IFI44L and IFIT1) in peripheral blood samples, as well as three type I IFN regulated proteins (CXCL10, MCP-1 and CCL19) in serum samples from AAV patients, healthy controls and disease controls. We found no difference in type I IFN regulated gene or protein expression between AAV patients and healthy controls. Furthermore, IRG and IFN regulated protein expression did not correlate with clinical measurements of disease activity in AAV patients. Thus, we conclude that systemic type I IFN responses are not key drivers of AAV pathogenesis and AAV should not be considered a type I interferonopathy.


2021 ◽  
Vol 1 (1) ◽  
pp. 49-59
Author(s):  
Selvakumar Subbian

The Coronavirus Disease-2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has claimed 1.2 million people globally since December 2019. Although the host factors underpinning COVID-19 pathology are not fully understood, type I interferon (IFN-I) response is considered crucial for SARS-CoV-2 pathogenesis. Perturbations in IFN-I signaling and associated interferon-inducible genes (ISG) are among the primary disease severity indicators in COVID-19. Consequently, IFN-I therapy, either alone or in- combination with existing antiviral or anti-inflammatory drugs, is tested in many ongoing clinical trials to reduce COVID-19 mortality. Since signaling by the IFN-I family of molecules regulates host immune response to other infectious and non-infectious diseases, any imbalance in this family of cytokines would impact the clinical outcome of COVID-19, as well as other co-existing diseases. Therefore, it is imperative to evaluate the beneficial-versus-detrimental effects of IFN-I immunotherapy for COVID-19 patients with divergent disease severity and other co-existing conditions. This review article summarizes the role of IFN-I signaling in infectious and non-infectious diseases of humans. It highlights the precautionary measures to be considered before administering IFN-I to COVID-19 patients having other co-existing disorders. Finally, suggestions are proposed to improve IFN-I immunotherapy to COVID-19.


2017 ◽  
Vol 114 (51) ◽  
pp. E10981-E10990 ◽  
Author(s):  
Meredith L. Stone ◽  
Katherine B. Chiappinelli ◽  
Huili Li ◽  
Lauren M. Murphy ◽  
Meghan E. Travers ◽  
...  

Ovarian cancer is the most lethal of all gynecological cancers, and there is an urgent unmet need to develop new therapies. Epithelial ovarian cancer (EOC) is characterized by an immune suppressive microenvironment, and response of ovarian cancers to immune therapies has thus far been disappointing. We now find, in a mouse model of EOC, that clinically relevant doses of DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi, respectively) reduce the immune suppressive microenvironment through type I IFN signaling and improve response to immune checkpoint therapy. These data indicate that the type I IFN response is required for effective in vivo antitumorigenic actions of the DNMTi 5-azacytidine (AZA). Through type I IFN signaling, AZA increases the numbers of CD45+ immune cells and the percentage of active CD8+ T and natural killer (NK) cells in the tumor microenvironment, while reducing tumor burden and extending survival. AZA also increases viral defense gene expression in both tumor and immune cells, and reduces the percentage of macrophages and myeloid-derived suppressor cells in the tumor microenvironment. The addition of an HDACi to AZA enhances the modulation of the immune microenvironment, specifically increasing T and NK cell activation and reducing macrophages over AZA treatment alone, while further increasing the survival of the mice. Finally, a triple combination of DNMTi/HDACi plus the immune checkpoint inhibitor α-PD-1 provides the best antitumor effect and longest overall survival, and may be an attractive candidate for future clinical trials in ovarian cancer.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi181-vi181
Author(s):  
Yuanfan Yang ◽  
Michael Brown ◽  
Kevin Stevenson ◽  
Giselle lopez ◽  
Reb Kornahrens ◽  
...  

Abstract Immunotherapy with polio:rhinovirus recombinant (PVSRIPO) has shown evidence of efficacy in a phase I clinical trial for recurrent GBM, resulting in durable radiographic responses and 21% long-term survival at 36 months. Ongoing research aims to enhance the clinical response rate by resolving the mechanisms of action and therapy resistance in vivo, thereby devising more effective therapies. Mouse glioma (CT2A) cells were intracranially implanted (day 0) in transgenic mice carrying poliovirus receptor CD155, and treated with intratumor PVSRIPO (5×105 pfu; day 6) to dissect early and late events following therapy. A blinded pathological review of 45 post-treatment tumors was performed. On day 8, a histological response, featured by tumor dissociation and shrinkage, with inflammation and microglia enrichment in the treated hemisphere, was common in PVSRIPO group (6/7) compared to controls (0/4). However, the response rate fell over time (7/12 on day 12; 1/7 on day 15) and the therapy was overcome by aggressive tumor regrowth. RNAseq was performed and Gene Set Enrichment Analysis of the tumor microenvironment revealed an acute type-I interferon (IFN)-related inflammation, correlating with the histological findings of profound proinflammatory engagement of microglia (Iba1+) widespread in the treated hemisphere. Microglia proliferation (Ki67+) was observed in the treated hemisphere, likely resulting from PVSRIPO infection, in CT2A and B16 intracranial models. This suggests an association of adaptive antitumor immunity—elicited by immediate intratumor type-I IFN-dominant inflammation—with tumor regression. Thus, buttressing type-I IFN directed antitumor CD8+T cell immunity, e.g. with blockade of the PD1:PD-L1 immune checkpoint, might contribute to tumor remission. Indeed, combination therapy with αPD-L1 antibody in the CT2A model showed longer median survival and higher long-term remission rate compared to monotherapy alone; CD8 T cell depletion can completely abrogate this efficacy with this therapy combination, confirming the role of anti-tumor immunity in this approach.


2007 ◽  
Vol 81 (18) ◽  
pp. 9778-9789 ◽  
Author(s):  
Janet L. Weslow-Schmidt ◽  
Nancy A. Jewell ◽  
Sara E. Mertz ◽  
J. Pedro Simas ◽  
Joan E. Durbin ◽  
...  

ABSTRACT The respiratory tract is a major mucosal site for microorganism entry into the body, and type I interferon (IFN) and dendritic cells constitute a first line of defense against viral infections. We have analyzed the interaction between a model DNA virus, plasmacytoid dendritic cells, and type I IFN during lung infection of mice. Our data show that murine gammaherpesvirus 68 (γHV68) inhibits type I IFN secretion by dendritic cells and that plasmacytoid dendritic cells are necessary for conventional dendritic cell maturation in response to γHV68. Following γHV68 intranasal inoculation, the local and systemic IFN-α/β response is below detectable levels, and plasmacytoid dendritic cells are activated and recruited into the lung with a tissue distribution that differs from that of conventional dendritic cells. Our results suggest that plasmacytoid dendritic cells and type I IFN have important but independent roles during the early response to a respiratory γHV68 infection. γHV68 infection inhibits type I IFN production by dendritic cells and is a poor inducer of IFN-α/β in vivo, which may serve as an immune evasion strategy.


2021 ◽  
Author(s):  
Jon B. Suzich ◽  
Sean R. Cuddy ◽  
Hiam Baidas ◽  
Sara Dochnal ◽  
Eugene Ke ◽  
...  

AbstractHerpes simplex virus (HSV) establishes latent infection in long-lived neurons. During initial infection, neurons are exposed to multiple inflammatory cytokines but the effects of immune signaling on the nature of HSV latency is unknown. We show that initial infection of primary murine neurons in the presence of type I interferon (IFN) results in a form of latency that is restricted for reactivation. We also found that the subnuclear condensates, promyelocytic leukemia-nuclear bodies (PML-NBs), are absent from primary sympathetic and sensory neurons but form with type I IFN treatment and persist even when IFN signaling resolves. HSV-1 genomes colocalized with PML-NBs throughout a latent infection of neurons only when type I IFN was present during initial infection. Depletion of PML prior to or following infection did not impact the establishment latency; however, it did rescue the ability of HSV to reactivate from IFN-treated neurons. This study demonstrates that viral genomes possess a memory of the IFN response during de novo infection, which results in differential subnuclear positioning and ultimately restricts the ability of genomes to reactivate.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Claire Zhang ◽  
David M Calcagno ◽  
Avinash Toomu ◽  
Kenneth M Huang ◽  
Zhenxing Fu ◽  
...  

Myocardial infarction (MI) elicits a rapid and vigorous reaction from the bone marrow hematopoietic compartment, inducing a massive efflux of myeloid first responders into the bloodstream. These cells traffic to the infarct, where they mediate cardiac remodeling and repair through inflammatory signaling and recruitment of additional immune cells to the injured myocardium. A hyperinflammatory myeloid compartment, as is produced by mutations in epigenetic regulator TET2 associated with clonal hematopoiesis, can thus drive adverse cardiac remodeling after MI and accelerate progression to heart failure. Whether loss of TET2 alters the transcriptional landscape of MI-induced myelopoiesis remains to be investigated in an unbiased fashion. Here, we performed single-cell RNA sequencing of >16,000 bone marrow myeloid cells isolated from wild-type and Tet2 -/- mice after MI to characterize the emergency hematopoietic response in the presence and absence of TET2. Our data capture distinct transitional states of myeloid lineage commitment and maturation, originating from myeloid progenitors and progressing along divergent granulocytic and monocytic differentiation trajectories. Additionally, we delineate a subpopulation of interferon (IFN)-activated myeloid progenitors, monocytes, and neutrophils characterized by the concerted upregulation of various Type I IFN-stimulated genes, and find the fraction of IFN-activated cells, as well as the degree of activation, to be markedly higher in Tet2 -/- mice. We have previously described activation of this pathway after MI in mice, and demonstrated cardioprotective effects of its genetic or pharmacological inhibition. Our findings reveal heightened activation of the antiviral Type I interferon response among bone marrow myeloid cells of Tet2 -/- mice during MI-induced emergency hematopoiesis. This highlights IFN signaling as a potential candidate driver of cardiovascular pathologies (including atherosclerosis, myocardial infarction, and heart failure) associated with TET2-mediated clonal hematopoiesis. Further studies are necessary to investigate whether Tet2 -/- mice exhibit enhanced response to blockade of Type I IFN signaling after MI, and to determine whether myeloid cells of TET2 -mutant humans are similarly activated.


Sign in / Sign up

Export Citation Format

Share Document