scholarly journals Gut-derived lipopolysaccharide remodels tumoral microenvironment and synergizes with PD-L1 checkpoint blockade via TLR4/MyD88/AKT/NF-κB pathway in pancreatic cancer

2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Hanlin Yin ◽  
Ning Pu ◽  
Qiangda Chen ◽  
Jicheng Zhang ◽  
Guochao Zhao ◽  
...  

AbstractLipopolysaccharide (LPS) as an important inflammatory mediator activates the innate/adaptive immune system. The existence of LPS in pancreatic ductal adenocarcinoma (PDAC) has been reported, however, its biological function in PDAC remains unclear. Here, we demonstrated that circulating and tumoral LPS was significantly increased by intestinal leakage in the orthotopic murine PDAC model, and LPS administration promoted T cell infiltration but exhaustion paradoxically in the subcutaneous murine PDAC model. By bioinformatic analysis, Toll-like receptor 4 (TLR4), LPS receptor, was further found to enrich in immune tolerance signaling in PDAC tissues. Then, a significant positive correlation was found between TLR4 and programmed death ligand-1 (PD-L1) in clinical PDAC tissues, as well as serum LPS and tumoral PD-L1. Meanwhile, LPS stimulation in vitro and in vivo obviously upregulated tumor PD-L1 expression, and effectively promoted cancer cells resistance to T cell cytotoxicity. Mechanistically, the activation of TLR4/MyD88/AKT/NF-κB cascade was found to participate in LPS mediated PD-L1 transcription via binding to its promoter regions, which was enhanced by crosstalk between NF-κB and AKT pathways. Finally, PD-L1 blockade could significantly reverse LPS-induced immune escape, and synergized with LPS treatment. Taken together, LPS can remodel tumor microenvironment, and synergize with PD-L1 blockade to suppress tumor growth, which may be a promising comprehensive strategy for PDAC.

Author(s):  
Qun Chen ◽  
Jing Jin ◽  
Xin Huang ◽  
Fan Wu ◽  
Hongguang Huang ◽  
...  

Abstract Background The immunosuppressive tumour microenvironment is a critical factor in the initiation and progression of glioblastoma (GBM), which is characterized by an abundance of tumour-associated macrophages (TAMs) but a paucity of infiltrating T cells. In this research, we studied whether epithelial membrane protein 3 (EMP3) plays a crucial role in immune modulation in GBM. Methods TCGA and CGGA transcriptomic profiles of wild-type IDH1 GBM were used for bioinformatic analysis. The role of EMP3 in GBM was validated through in vivo and in vitro experiments. Human GBM specimens were collected and evaluated using immunofluorescence analysis. Results EMP3 was associated with immunosuppression in GBM. Elevated EMP3 in GBM areas was accompanied by high expression of PD-L1 and abundant M2 TAM recruitment but a lake of T cell infiltration. We found that EMP3 was a potent protein in M2 TAM polarization and recruitment that impaired the ability of GBM cells to secrete CCL2 and TGF-β1. Furthermore, EMP3 suppressed T cell infiltration into GBM tumours by inhibiting the secretion of CXCL9 and CXCL10 by macrophages and led to an effective response to anti-PD1 therapy. Conclusions EMP3 is thus a critical immunosuppressive factor for recruiting TAMs in GBM and suppressing intratumoural T cell infiltration to facilitate tumour progression and is a potential therapeutic target.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3816
Author(s):  
Loryn Holokai ◽  
Jayati Chakrabarti ◽  
Joanne Lundy ◽  
Daniel Croagh ◽  
Pritha Adhikary ◽  
...  

Purpose: Pancreatic ductal adenocarcinoma (PDAC) has the lowest five-year survival rate of all cancers in the United States. Programmed death 1 receptor (PD-1)-programmed death ligand 1 (PD-L1) immune checkpoint inhibition has been unsuccessful in clinical trials. Myeloid-derived suppressor cells (MDSCs) are known to block anti-tumor CD8+ T cell immune responses in various cancers including pancreas. This has led us to our objective that was to develop a clinically relevant in vitro organoid model to specifically target mechanisms that deplete MDSCs as a therapeutic strategy for PDAC. Method: Murine and human pancreatic ductal adenocarcinoma (PDAC) autologous organoid/immune cell co-cultures were used to test whether PDAC can be effectively treated with combinatorial therapy involving PD-1 inhibition and MDSC depletion. Results: Murine in vivo orthotopic and in vitro organoid/immune cell co-culture models demonstrated that polymorphonuclear (PMN)-MDSCs promoted tumor growth and suppressed cytotoxic T lymphocyte (CTL) proliferation, leading to diminished efficacy of checkpoint inhibition. Mouse- and human-derived organoid/immune cell co-cultures revealed that PD-L1-expressing organoids were unresponsive to nivolumab in vitro in the presence of PMN-MDSCs. Depletion of arginase 1-expressing PMN-MDSCs within these co-cultures rendered the organoids susceptible to anti-PD-1/PD-L1-induced cancer cell death. Conclusions: Here we use mouse- and human-derived autologous pancreatic cancer organoid/immune cell co-cultures to demonstrate that elevated infiltration of polymorphonuclear (PMN)-MDSCs within the PDAC tumor microenvironment inhibit T cell effector function, regardless of PD-1/PD-L1 inhibition. We present a pre-clinical model that may predict the efficacy of targeted therapies to improve the outcome of patients with this aggressive and otherwise unpredictable malignancy.


2021 ◽  
Author(s):  
Nina Frey ◽  
Luigi Tortola ◽  
David Egli ◽  
Sharan Janjuha ◽  
Kim Fabiano Marquart ◽  
...  

Pancreatic ductal adenocarcinoma (PDA) is an inherently immune cell deprived tumor, characterized by desmoplastic stroma and suppressive immune cells. Here we systematically dissected PDA intrinsic mechanisms of immune evasion by in vitro and in vivo CRISPR screening, and identified Rnf31 and Vps4b as essential factors required for escaping CD8+ T cell-killing. Using murine PDA cells and human PDA organoids, we demonstrate that Rnf31 protects from TNF-mediated caspase 8 cleavage and subsequent apoptosis induction. For Vps4b we found that inactivation impairs autophagy, resulting in increased accumulation of CD8+ T cell-derived granzyme B and subsequent tumor cell lysis. Orthotopic transplantation of Rnf31- or Vps4b deficient pancreatic tumors, moreover, revealed increased CD8+ T cell infiltration and effector function, and markedly reduced tumor growth in mice. Our work uncovers vulnerabilities in PDA that might be exploited to render these tumors more susceptible to the immune system.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mauro Di Pilato ◽  
Miguel Palomino-Segura ◽  
Ernesto Mejías-Pérez ◽  
Carmen E. Gómez ◽  
Andrea Rubio-Ponce ◽  
...  

AbstractNeutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 817
Author(s):  
Mehreen Ishfaq ◽  
Timothy Pham ◽  
Cooper Beaman ◽  
Pablo Tamayo ◽  
Alice L. Yu ◽  
...  

MDSCs are immune cells of myeloid lineage that plays a key role in promoting tumor growth. The expansion of MDSCs in tumor-bearing hosts reduces the efficacy of checkpoint inhibitors and CAR-T therapies, and hence strategies that deplete or block the recruitment of MDSCs have shown benefit in improving responses to immunotherapy in various cancers, including NB. Ibrutinib, an irreversible molecular inhibitor of BTK, has been widely studied in B cell malignancies, and recently, this drug is repurposed for the treatment of solid tumors. Herein we report that BTK is highly expressed in both granulocytic and monocytic murine MDSCs isolated from mice bearing NB tumors, and its increased expression correlates with a poor relapse-free survival probability of NB patients. Moreover, in vitro treatment of murine MDSCs with ibrutinib altered NO production, decreased mRNA expression of Ido, Arg, Tgfβ, and displayed defects in T-cell suppression. Consistent with these findings, in vivo inhibition of BTK with ibrutinib resulted in reduced MDSC-mediated immune suppression, increased CD8+ T cell infiltration, decreased tumor growth, and improved response to anti-PDL1 checkpoint inhibitor therapy in a murine model of NB. These results demonstrate that ibrutinib modulates immunosuppressive functions of MDSC and can be used either alone or in combination with immunotherapy for augmenting antitumor immune responses in NB.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Haifeng C. Xu ◽  
Ruifeng Wang ◽  
Prashant V. Shinde ◽  
Lara Walotka ◽  
Anfei Huang ◽  
...  

AbstractImmune evasion of pathogens can modify the course of infection and impact viral persistence and pathology. Here, using different strains of the lymphocytic choriomeningitis virus (LCMV) model system, we show that slower propagation results in limited type I interferon (IFN-I) production and viral persistence. Specifically, cells infected with LCMV-Docile exhibited reduced viral replication when compared to LCMV-WE and as a consequence, infection with LCMV-Docile resulted in reduced activation of bone marrow derived dendritic cells (BMDCs) and IFN-I production in vitro in comparison with LCMV-WE. In vivo, we observed a reduction of IFN-I, T cell exhaustion and viral persistence following infection of LCMV-Docile but not LCMV-WE. Mechanistically, block of intracellular protein transport uncovered reduced propagation of LCMV-Docile when compared to LCMV-WE. This reduced propagation was critical in blunting the activation of the innate and adaptive immune system. When mice were simultaneously infected with LCMV-Docile and LCMV-WE, immune function was restored and IFN-I production, T cell effector functions as well as viral loads were similar to that of mice infected with LCMV-WE alone. Taken together, this study suggests that reduced viral propagation can result in immune evasion and viral persistence.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1383-1383 ◽  
Author(s):  
Tongyuan Xue ◽  
Marissa Del Real ◽  
Emanuela Marcucci ◽  
Candida Toribio ◽  
Sonia Maryam Setayesh ◽  
...  

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The cure rate for primary AML patients is only 35% and decreases with age. Novel and effective immunotherapies for patients with relapsed and/or refractory (r/r) AML remain an urgent unmet need. CD33 is an attractive immunotherapeutic target for myeloid malignancies given its expression on more than 85% of AML patient samples. We therefore set out to design and test CD33 chimeric antigen receptor (CD33CAR) T cells preclinically as a single agent and in combinational therapy. To assess antileukemic responses of CD33CAR T cells in vitro and in vivo, we enriched CD4/CD8 T cells from peripheral blood mononuclear cells (PBMCs) and genetically modified them to express a second-generation CD33CAR. CD33CAR T cells exhibited potent antigen dependent CD107a degranulation, IFN-γ production and killing activities against AML cells in vitro. Using a NOD-SCID-IL2Rgnull (NSG) xenograft model engrafted with MOLM-14-ffluc, a CD33 expressing AML cell line transduced with lentivirus carrying firefly luciferase (ffluc) and enhanced green fluorescent protein (eGFP), 3 million CD33CAR or mock T cells were introduced intravenously. CD33 CAR T cell-treated group displayed 98.2% leukemic regression 4 days post CAR T infusion, and 99.6% reduction on day 31. Bioluminescent imaging (BLI) and Kaplan-Meier analysis demonstrated that CD33CAR T cells significantly decreased leukemic burden and prolonged overall survival compared to mock T cells in vivo. Decitabine, a DNA hypomethylating agent (HMA), is a main therapeutic agent for treating AML. We observed HMA treatment led to increased CD33 expression on MOLM-14 cells in vitro. We hypothesized that decitabine can potentiate CD33CAR T cell-mediated AML killing by increasing CD33 expression. MOLM-14 cells were treated with either decitabine alone, CD33CAR T cells alone, or sequential treatment using various concentrations of decitabine or DMSO followed by CD33CAR or mock T cells in an E:T ratio of 1:100. We determined the target specific killing activities in each group using flow cytometric based analysis 48 and 96 hours later. The decitabine followed by CD33CAR T cells treatment reproducibly resulted in the most robust antileukemic activity with 80.6% MOLM-14 cells killed. In comparison, CD33CAR T cells or decitabine monotherapy resulted in 11.5% and 50.9% killing, respectively. In vivo testing of the combinational effects of decitabine and CD33CAR T cells are underway and will be updated at the meeting. Finally, checkpoint blockade targeting programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) has shown survival benefits, particularly in combination with HMA, for patients with r/r AML (Daver et al. 2019). We observed elevated PD-L1 expression on residual AML blasts that survived the treatment with decitabine in combination with CD33CAR T cells. Therefore, we hypothesized that blockade of PD-1/PD-L1 interaction might further improve the antileukemic effect of CD33CAR T cells against AML cells post antigen induction by decitabine. MOLM-14 cells were treated with decitabine for 2 days and CD33CAR T cells were added in an E:T ratio of 1:75. Anti-PD-1 or IgG4 antibody was added to the culture at various concentrations. The most robust CD33 specific killing was seen in the culture with anti-PD-1 antibody added. Further characterization are underway and will be presented. Taken together, our preclinical findings have demonstrated the potency of the CD33CAR T cell therapy and ways to optimize its efficacy. Our results support clinical translation of CD33CAR T cells for patients with AML. Disclosures Budde: F. Hoffmann-La Roche Ltd: Consultancy.


Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Man-Chin Chen ◽  
Christian Ronquillo Pangilinan ◽  
Che-Hsin Lee

Immunotherapy is becoming a popular treatment modality in combat against cancer, one of the world’s leading health problems. While tumor cells influence host immunity via expressing immune inhibitory signaling proteins, some bacteria possess immunomodulatory activities that counter the symptoms of tumors. The accumulation of Salmonella in tumor sites influences tumor protein expression, resulting in T cell infiltration. However, the molecular mechanism by which Salmonella activates T cells remains elusive. Many tumors have been reported to have high expressions of programmed death-ligand 1 (PD-L1), which is an important immune checkpoint molecule involved in tumor immune escape. In this study, Salmonella reduced the expression of PD-L1 in tumor cells. The expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and the phospho-p70 ribosomal s6 kinase (P-p70s6K) pathway were revealed to be involved in the Salmonella-mediated downregulation of PD-L1. In a tumor-T cell coculture system, Salmonella increased T cell number and reduced T cell apoptosis. Systemic administration of Salmonella reduced the expressions of PD-L-1 in tumor-bearing mice. In addition, tumor growth was significantly inhibited along with an enhanced T cell infiltration following Salmonella treatment. These findings suggest that Salmonella acts upon the immune checkpoint, primarily PD-L1, to incapacitate protumor effects and thereby inhibit tumor growth.


1999 ◽  
Vol 190 (7) ◽  
pp. 1033-1038 ◽  
Author(s):  
Jan Paul Medema ◽  
Joan de Jong ◽  
Thorbald van Hall ◽  
Cornelis J.M. Melief ◽  
Rienk Offringa

The antiapoptotic protein cellular FLICE (Fas-associated death domain–like IL-1β–converting enzyme) inhibitory protein (cFLIP) protects cells from CD95(APO-1/Fas)-induced apoptosis in vitro and was found to be overexpressed in human melanomas. However, cytotoxic T cell–induced apoptosis, which is critically involved in tumor control in vivo, is not inhibited by cFLIP in vitro, as only CD95- and not perforin-dependent lysis is affected. This calls into question whether cFLIP is sufficient to allow escape from T cell–dependent immunity. Using two murine tumors, we directly demonstrate that cFLIP does result in escape from T cell immunity in vivo. Moreover, tumor cells are selected in vivo for elevated cFLIP expression. Therefore, our data indicate that CD95-dependent apoptosis constitutes a more prominent mechanism for tumor clearance than has so far been anticipated and that blockade of this pathway can result in tumor escape even when the perforin pathway is operational.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 891-891
Author(s):  
Annamaria Gulla ◽  
Eugenio Morelli ◽  
Mehmet K. Samur ◽  
Cirino Botta ◽  
Megan Johnstone ◽  
...  

Abstract Immune therapies including CAR T cells and bispecific T cell engagers are demonstrating remarkable efficacy in relapsed refractory myeloma (MM). In this context, we have recently shown that proteasome inhibitor bortezomib (BTZ) results in immunogenic cell death (ICD) and in a viral mimicry state in MM cells, allowing for immune recognition of tumor cells. Induction of a robust anti-MM immune response after BTZ was confirmed both in vitro and in vivo: treatment of 5TGM1 MM cells with BTZ induced tumor regression associated with memory immune response, confirmed by ELISPOT of mouse splenocytes. We have confirmed the obligate role of calreticulin (CALR) exposure in phagocytosis and the ICD process, since BTZ-induced ICD is impaired in CALR KO MM cells both in vitro and in vivo. We further showed that the therapeutic efficacy of BTZ in patients was correlated with ICD induction: BTZ-induced ICD signature was positively correlated with OS (p=0.01) in patients enrolled in the IFM/DFCI 2009 study. Together, these studies indicate that ICD is associated with long-term response after BTZ treatment. In this work, we reasoned that genomic or transcriptomic alterations associated with shorter survival of MM patients after BTZ treatment may impair activation of the ICD pathway. To this aim, we performed a transcriptomic analysis of purified CD138+ cells from 360 newly diagnosed, clinically-annotated MM patients enrolled in the IFM/DFCI 2009 study. By focusing on genes involved in the ICD process, we found that low levels of GABA Type A Receptor-Associated Protein (GABARAP) were associated with inferior clinical outcome (EFS, p=0.0055). GABARAP gene locus is located on chr17p13.1, a region deleted in high risk (HR) MM with unfavorable prognosis. Remarkably, we found that correlation of low GABARAP levels with shorter EFS was significant (p=0.018) even after excluding MM patients with del17p; and GABARAP is therefore an independent predictor of clinical outcome. GABARAP is a regulator of autophagy and vesicular trafficking, and a putative CALR binding partner. Interestingly, among a panel of MM cell lines (n=6), BTZ treatment failed to induce exposure of CALR and MM cell phagocytosis by DCs in KMS11 cells, which carry a monoallelic deletion of GABARAP. This effect was rescued by stable overexpression of GABARAP. Moreover, CRISPR/Cas9-mediated KO of GABARAP in 3 ICD-sensitive cell lines (AMO1, H929, 5TGM1) abrogated CALR exposure and ICD induction by BTZ. GABARAP add-back by stable overexpression in KO clones restored both CALR exposure and induction of ICD, confirming GABARAP on-target activity. Similarly, pre-treatment of GABARAP KO cells with recombinant CALR restored MM phagocytosis, further confirming that GABARAP impairs ICD via inhibition of CALR exposure. Based on these findings, we hypothesized that GABARAP loss may alter the ICD pathway via CALR trapping, resulting in the ICD resistant phenotype observed in GABARAP null and del17p cells. To this end, we explored the impact of GABARAP KO on the CALR protein interactome, in the presence or absence of BTZ. Importantly, GABARAP KO produced a significant increase of CALR binding to stanniocalcin 1 (STC1), a phagocytosis checkpoint that mediates the mitochondrial trapping of CALR, thereby minimizing its exposure upon ICD. Consistently, GABARAP KO also affected CALR interactome in BTZ-treated cells, which was significantly enriched in mitochondrial proteins. Importantly, co-IP experiments confirmed GABARAP interaction with STC1. These data indicate a molecular scenario whereby GABARAP interacts with STC1 to avoid STC1-mediated trapping of CALR, allowing for the induction of ICD after treatment with ICD inducers; on the other hand, this mechanism is compromised in GABARAP null or del17p cells, and the STC1-CALR complex remains trapped in the mitochondria, resulting in ICD resistance. To functionally validate our findings in the context of the immune microenvironment, we performed mass Cytometry after T cell co-culture with DCs primed by both WT and GABARAP KO AMO1 clones. And we confirmed that treatment of GABARAP KO clones with BTZ failed to activate an efficient T cell response. In conclusion, our work identifies a unique mechanism of immune escape which may contribute to the poor clinical outcome observed in del17p HR MM patients. It further suggests that novel therapies to restore GABARAP may allow for the induction of ICD and improved patient outcome in MM. Disclosures Bianchi: Jacob D. Fuchsberg Law Firm: Consultancy; MJH: Honoraria; Karyopharm: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria. Richardson: AstraZeneca: Consultancy; Regeneron: Consultancy; Protocol Intelligence: Consultancy; Secura Bio: Consultancy; GlaxoSmithKline: Consultancy; Sanofi: Consultancy; Janssen: Consultancy; Takeda: Consultancy, Research Funding; AbbVie: Consultancy; Karyopharm: Consultancy, Research Funding; Celgene/BMS: Consultancy, Research Funding; Oncopeptides: Consultancy, Research Funding; Jazz Pharmaceuticals: Consultancy, Research Funding. Chauhan: C4 Therapeutics: Current equity holder in publicly-traded company; Stemline Therapeutics, Inc: Consultancy. Munshi: Legend: Consultancy; Karyopharm: Consultancy; Amgen: Consultancy; Janssen: Consultancy; Celgene: Consultancy; Oncopep: Consultancy, Current equity holder in publicly-traded company, Other: scientific founder, Patents & Royalties; Abbvie: Consultancy; Takeda: Consultancy; Adaptive Biotechnology: Consultancy; Novartis: Consultancy; Pfizer: Consultancy; Bristol-Myers Squibb: Consultancy. Anderson: Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Scientific Founder of Oncopep and C4 Therapeutics: Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Mana Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document