scholarly journals Long noncoding RNAs: fine-tuners hidden in the cancer signaling network

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shanshan Zhao ◽  
Xue Zhang ◽  
Shuo Chen ◽  
Song Zhang

AbstractWith the development of sequencing technology, a large number of long non-coding RNAs (lncRNAs) have been identified in addition to coding genes. LncRNAs, originally considered as junk RNA, are dysregulated in various types of cancer. Although protein-coding signaling pathways underlie various biological activities, and abnormal signal transduction is a key trigger and indicator for tumorigenesis and cancer progression, lncRNAs are sparking keen interest due to their versatile roles in fine-tuning signaling pathways. We are just beginning to scratch the surface of lncRNAs. Therefore, despite the fact that lncRNAs drive malignant phenotypes from multiple perspectives, in this review, we focus on important signaling pathways modulated by lncRNAs in cancer to demonstrate an up-to-date understanding of this emerging field.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dingyu Hu ◽  
Wenjun Shao ◽  
Li Liu ◽  
Yanyan Wang ◽  
Shunling Yuan ◽  
...  

AbstractMYB is often overexpressed in malignant tumors and plays a carcinogenic role in the initiation and development of cancer. Deletion of the MYB regulatory C-terminal domain may be a driving mutation leading to tumorigenesis, therefore, different tumor mechanisms produce similar MYB proteins. As MYB is a transcription factor, priority has been given to identifying the genes that it regulates. All previous attention has been focused on protein-coding genes. However, an increasing number of studies have suggested that MYB can affect the complexity of cancer progression by regulating tumor-associated noncoding RNAs (ncRNAs), such as microRNAs, long-non-coding RNAs and circular RNAs. ncRNAs can regulate the expression of numerous downstream genes at the transcription, RNA processing and translation levels, thereby having various biological functions. Additionally, ncRNAs play important roles in regulating MYB expression. This review focuses on the intricate crosstalk between oncogenic MYB and ncRNAs, which play a pivotal role in tumorigenesis, including proliferation, apoptosis, angiogenesis, metastasis, senescence and drug resistance. In addition, we discuss therapeutic strategies for crosstalk between MYB and ncRNAs to prevent the occurrence and development of cancer.


2021 ◽  
Vol 22 ◽  
Author(s):  
Vandana Golhani ◽  
Suman Kumar Ray ◽  
Sukhes Mukherjee

: MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are proficient in regulating gene expression post-transcriptionally. Considering the recent trend in exploiting non-coding RNAs (ncRNAs) as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agents against angiogenesis is an important scientific aspect. An estimated 70% of the genome is actively transcribed, only 2% of which codes for known protein-coding genes. Long noncoding RNAs (lncRNAs) are a large and diverse class of RNAs > 200 nucleotides in length, and not translated into protein, and are of utmost importance and it governs the expression of genes in a temporal, spatial, and cell context-dependent manner. Angiogenesis is an essential process for organ morphogenesis and growth during development, and it is relevant during the repair of wounded tissue in adults. It is coordinated by an equilibrium of pro-and anti-angiogenic factors; nevertheless, when affected, it promotes several diseases, including breast cancer. Signaling pathways involved here are tightly controlled systems that regulate the appropriate timing of gene expression required for the differentiation of cells down a particular lineage essential for proper tissue development. Lately, scientific reports are indicating that ncRNAs, such as miRNAs, and lncRNAs, play critical roles in angiogenesis related to breast cancer. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signaling pathways regulated by these ncRNAs with molecular medicine perspective, are highlighted in this write-up.


Gene ◽  
2020 ◽  
Vol 753 ◽  
pp. 144796 ◽  
Author(s):  
Mohadeseh Esmaeili ◽  
Maryam Keshani ◽  
Mehrdad Vakilian ◽  
Maryam Esmaeili ◽  
Maryam Peymani ◽  
...  

2018 ◽  
Author(s):  
Iuliia K. Karnaukhova ◽  
Dmitrii E. Polev ◽  
Larisa L. Krukovskaya ◽  
Alexey E. Masharsky ◽  
Olga V. Nazarenko ◽  
...  

AbstractOrthopedia homeobox (OTP) gene encodes a homeodomain-containing transcription factor involved in brain development. OTP is mapped to human chromosome 5q14.1. Earlier we described transcription in the second intron of this gene in wide variety of tumors, but among normal tissues only in testis. In GeneBank these transcripts are presented by several 300-400 nucleotides long AI267901-like ESTs.We assumed that AI267901-like ESTs belong to longer transcript(s). We used the Rapid Amplification of cDNA Ends (RACE) approach and other methods to find the full-length transcript. The found transcript was 2436 nucleotides long polyadenylated sequence in antisense to OTP gene. The corresponding gene consisted of two exons separated by an intron of 2961 bp long. The first exon was found to be 91 bp long and located in the third exon of OTP gene. The second exon was 2345bp long and located in the second intron of OTP gene.The search of possible open reading frames (ORFs) showed the lack of significant ORFs. We have shown the expression of new gene in many human tumors and only in one sampled normal testis. The data suggest that we discovered a new antisense cancer-testis sequence OTP-AS1 (OTP- antisense RNA 1), which belongs to long noncoding RNAs (lncRNAs). According to our findings we assume that OTP-AS1 and OTP genes may be the CT-coding gene/CT-ncRNA pair involved in regulatory interactions.Author summaryPreviously, long non-coding RNAs (lncRNAs) were considered as genetic “noise”. However, it was later shown that only 2% of genomic transcripts have a protein-coding ability. Non-coding RNA is divided into short non-coding RNAs (20-200 nucleotides) and long noncoding RNAs (200-100,000 nucleotides). Genes encoding lncRNA often overlap or are adjacent to protein-coding genes, and localization of this kind is beneficial in order to regulate the transcription of neighboring genes. Studies have shown that of lncRNAs play many roles in the regulation of gene expression. New evidence indicates that dysfunctions of lncRNAs are associated with human diseases and cancer.In our study we found a new cancer-testis long noncoding RNA (OTP-AS1), which is an antisense of protein-coding cancer-testis gene (OTP). Thus, OTP-AS1 and OTP genes may be the CT-coding gene/CT-ncRNA pair involved in regulatory interactions. This is supported by the similar profile of their expression. OTP-AS1 may be of interest as a potential diagnostic marker of cancer or a potential target for cancer therapy.Part of OTP-AS1 gene (5’-end of the second exon) is evolutionary younger than the rest of gene sequence and is less conservative. This links OTP-AS1 gene with so-called TSEEN (tumor-specifically expressed, evolutionary novel) genes described by the authors in previous papers.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Teresa Colombo ◽  
Lorenzo Farina ◽  
Giuseppe Macino ◽  
Paola Paci

It is becoming increasingly clear that short and long noncoding RNAs critically participate in the regulation of cell growth, differentiation, and (mis)function. However, while the functional characterization of short non-coding RNAs has been reaching maturity, there is still a paucity of well characterized long noncoding RNAs, even though large studies in recent years are rapidly increasing the number of annotated ones. The long noncoding RNA PVT1 is encoded by a gene that has been long known since it resides in the well-known cancer risk region 8q24. However, a couple of accidental concurrent conditions have slowed down the study of this gene, that is, a preconception on the primacy of the protein-coding over noncoding RNAs and the prevalent interest in its neighbor MYC oncogene. Recent studies have brought PVT1 under the spotlight suggesting interesting models of functioning, such as competing endogenous RNA activity and regulation of protein stability of important oncogenes, primarily of the MYC oncogene. Despite some advancements in modelling the PVT1 role in cancer, there are many questions that remain unanswered concerning the precise molecular mechanisms underlying its functioning.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Liwei Meng ◽  
Zhaoquan Xing ◽  
Zhaoxin Guo ◽  
Zhaoxu Liu

AbstractBladder cancer (BCa) is a kind of common urogenital malignancy worldwide. Emerging evidence indicated that long noncoding RNAs (lncRNAs) play critical roles in the progression of BCa. In this study, we discovered a novel lncRNA LINC01116 whose expression increased with stages in BCa patients and closely related to the survival rate of BCa patients. However, the molecular mechanism dictating the role of LINC01116 in BCa has not been well elucidated so far. In our study, we detected that the expression of LINC01116 was boosted in BCa cells. Moreover, the results of a series of functional assays showed that LINC01116 knockdown suppressed the proliferation, migration, and invasion of BCa cells. Thereafter, GEPIA indicated the closest correlation of LINC01116 with two protein-coding genes, ELK3 and HOXD8. Interestingly, LINC01116 was mainly a cytoplasmic lncRNA in BCa cells, and it could modulate ELK3 and HOXD8 at post-transcriptional level. Mechanically, LINC01116 increased the expression of ELK3 by adsorbing miR-3612, and also stabilized HOXD8 mRNA by binding with DKC1. Rescue experiments further demonstrated that the restraining influence of LINC01116 knockdown on the progression of BCa, was partly rescued by ELK3 promotion, but absolutely reversed by the co-enhancement of ELK3 and HOXD8. More intriguingly, HOXD8 acted as a transcription factor to activate LINC01116 in BCa. In conclusion, HOXD8-enhanced LINC01116 contributes to the progression of BCa via targeting ELK3 and HOXD8, which might provide new targets for treating patients with BCa.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Ching-Wen Lin ◽  
Pei-Ying Lin ◽  
Pan-Chyr Yang

Epithelial-derived tumor cells acquire the capacity for epithelial-to-mesenchymal transition (EMT), which enables them to invade adjacent tissues and/or metastasize to distant organs. Cancer metastasis is the main cause of cancer-related death. Molecular mechanisms involved in the switch from an epithelial phenotype to mesenchymal status are complicated and are controlled by a variety of signaling pathways. Recently, a set of noncoding RNAs (ncRNAs), including miRNAs and long noncoding RNAs (lncRNAs), were found to modulate gene expressions at either transcriptional or posttranscriptional levels. These ncRNAs are involved in EMT through their interplay with EMT-related transcription factors (EMT-TFs) and EMT-associated signaling. Reciprocal regulatory interactions between lncRNAs and miRNAs further increase the complexity of the regulation of gene expression and protein translation. In this review, we discuss recent findings regarding EMT-regulating ncRNAs and their associated signaling pathways involved in cancer progression.


2017 ◽  
Author(s):  
Joana Carlevaro-Fita ◽  
Andrés Lanzós ◽  
Lars Feuerbach ◽  
Chen Hong ◽  
David Mas-Ponte ◽  
...  

AbstractLong non-coding RNAs (lncRNAs) that drive tumorigenesis are a growing focus of cancer genomics studies. To facilitate further discovery, we have created the “Cancer LncRNA Census” (CLC), a manually-curated and strictly-defined compilation of lncRNAs with causative roles in cancer. CLC has two principle applications: first, as a resource for training and benchmarking de novo identification methods; and second, as a dataset for studying the fundamental properties of these genes.CLC Version 1 comprises 122 lncRNAs implicated in 29 distinct cancers. LncRNAs are included based on functional or genetic evidence for causative roles in cancer progression. All belong to the GENCODE reference annotation, to enable integration across projects and datasets. For each entry, the evidence type, biological activity (oncogene or tumour suppressor), source reference and cancer type are recorded. Supporting its usefulness, CLC genes are significantly enriched amongst de novo predicted driver genes from PCAWG. CLC genes are distinguished from other lncRNAs by a series of features consistent with biological function, including gene length, high expression and sequence conservation of both exons and promoters. We identify a trend for CLC genes to be co-localised with known protein-coding cancer genes along the human genome. Finally, by integrating data from transposon-mutagenesis functional screens, we show that mouse orthologues of CLC genes tend also to be cancer genes.Thus CLC represents a valuable resource for research into long non-coding RNAs in cancer. Their evolutionary and genomic properties have implications for understanding disease mechanisms and point to conserved functions across ~80 million years of evolution.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu H. Sun ◽  
Ruoqiao Huiyi Wang ◽  
Khai Du ◽  
Jiang Zhu ◽  
Jihong Zheng ◽  
...  

AbstractPIWI-interacting small RNAs (piRNAs) protect the germline genome and are essential for fertility. piRNAs originate from transposable element (TE) RNAs, long non-coding RNAs, or 3´ untranslated regions (3´UTRs) of protein-coding messenger genes, with the last being the least characterized of the three piRNA classes. Here, we demonstrate that the precursors of 3´UTR piRNAs are full-length mRNAs and that post-termination 80S ribosomes guide piRNA production on 3´UTRs in mice and chickens. At the pachytene stage, when other co-translational RNA surveillance pathways are sequestered, piRNA biogenesis degrades mRNAs right after pioneer rounds of translation and fine-tunes protein production from mRNAs. Although 3´UTR piRNA precursor mRNAs code for distinct proteins in mice and chickens, they all harbor embedded TEs and produce piRNAs that cleave TEs. Altogether, we discover a function of the piRNA pathway in fine-tuning protein production and reveal a conserved piRNA biogenesis mechanism that recognizes translating RNAs in amniotes.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhongyuan Zhang ◽  
Wei Wei ◽  
Hao Wang ◽  
Jiangning Dong

The exploration of dynamic N6-methyladenosine (m6A) RNA modification in mammalian cells has attracted great interest in recent years. M6A modification plays pivotal roles in multiple biological and pathological processes, including cellular reprogramming, fertility, senescence, and tumorigenesis. In comparison with growing research unraveling the effects of m6A modifications on eukaryotic messenger RNAs, reports of the association between noncoding RNAs and m6A modification are relatively limited. Noncoding RNAs that undergo m6A modification are capable of regulating gene expression and also play an important role in epigenetic regulation. Moreover, the homeostasis of m6A modification can be affected by noncoding RNAs across a broad spectrum of biological activities. Importantly, fine-tuning and interaction between these processes are responsible for cell development, as well as the initiation and progression of the disease. Hence, in this review, we provide an account of recent developments, revealing biological interactions between noncoding RNAs and m6A modification, and discuss the potential clinical applications of interfering with m6A modification.


Sign in / Sign up

Export Citation Format

Share Document