Thermo-driven self-healable organic/inorganic nanohybrid polyurethane film with excellent mechanical properties

2021 ◽  
Author(s):  
Haoliang Wang ◽  
Hui Wang ◽  
Junhuai Xu ◽  
Xiaosheng Du ◽  
Shiwen Yang ◽  
...  
2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Jie Yang ◽  
Hui Li ◽  
John Harvey ◽  
Bing Yang ◽  
Saifullah Mahmud ◽  
...  

Abstract Porous polyurethane concrete (PPUC) is a novel material for permeable pavements and is considered as an alternative to porous asphalt or porous cement concrete. However, studies of the mechanical properties of PPUC are still insufficient. In this study, the comprehensive mechanical properties and water stability of PPUC with different gradations and polyurethane dosages were investigated, and its water damage mechanism was preliminarily explored. The results show that the flexural strength and Marshall stability of PPUC can more easily reach the index in the standards of porous cement concrete or porous asphalt, while the compressive strength and abrasion resistance are the weak points of its mechanical properties and need to be further optimized. The mechanical properties and water stability of PPUC were effectively improved by increasing the polyurethane dosage and using continuously graded aggregates. PPUC is more susceptible to water damage because water reacts with the residual isocyanate groups within the polyurethane film to generate carbon dioxide gas, which reduces the cohesion and adhesion performance of polyurethane film. This study provides a comprehensive understanding of the mechanical properties of PPUC and an initial insight into the mechanism of water damage.


2020 ◽  
Vol 22 (2) ◽  
pp. 50-55
Author(s):  
Zhao Lin ◽  
Li Yunyun ◽  
Cheng Bin ◽  
Chen Yu

AbstractPolyurethane (PU) is a polymer widely used in the biomedical field with excellent mechanical properties and good biocompatibility. However, it usually exhibits poor antibacterial properties for practical applications. Efforts are needed to improve the antibacterial activities of PU films for broader application prospect and added application values. In the present work, two PU films, TDI-P(E-co-T) and TDI-N-100-P(E-co-T), were prepared. Silver nanoparticles (AgNPs) were composited into the TDI-N-100-P(E-co-T) film for better mechanical properties and antibacterial activities, and resultant PU/AgNPs composite film was systematically characterized and studied. The as-prepared PU/AgNPs composite film exhibits much better antibacterial properties than the traditional PU membrane, exhibiting broader application prospect.


2016 ◽  
Vol 2 (2) ◽  
pp. 78-82
Author(s):  
K. Rathika ◽  
S. Begila David

The study deals the effect of increasing NCO/OH molar ratio on the physico-mechanical properties of isocyanate terminated polyurethane prepolymer. The prepolymer was prepared using castor oil and toluene-2,4-diisocyanate. The NCO/OH molar ratio has been varied from 1.6 to 2.0. The formation of the prepolymer was confirmed by UV and FTIR spectroscopy. The results reveal that the curing time of the prepolymer decreased with increase in NCO/OH molar ratio. When NCO/OH molar ratio increased, the tensile strength of the polyurethane film increased, while percent elongation decreased due to increase in hard segment content.


2005 ◽  
Vol 75 (5) ◽  
pp. 425-430 ◽  
Author(s):  
Jung Woo Park ◽  
Won Young Jeong ◽  
Seung Kook An ◽  
Jae Ho Lee

RSC Advances ◽  
2021 ◽  
Vol 11 (44) ◽  
pp. 27183-27192
Author(s):  
Jie Liu ◽  
Feifei Zhang ◽  
Zhendi An ◽  
Wanpeng Shi ◽  
Hong Li

In this research, amino functional buffing dust (HBD) was used as an excellent biomass functional filler to improve the hygienic properties of synthetic leather, and provide a novel way for the treatment and disposal of leather buffing waste.


2003 ◽  
Vol 91 (2) ◽  
pp. 1086-1096 ◽  
Author(s):  
Martin K. McDermott ◽  
LeRoy W. Schroeder ◽  
Shay L. Balsis ◽  
Nicole A. Paradiso ◽  
Michelle L. Byrne ◽  
...  

Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document