scholarly journals Stable single atomic silver wires assembling into a circuitry-connectable nanoarray

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yaxin Chen ◽  
Daiming Tang ◽  
Zhiwei Huang ◽  
Xi Liu ◽  
Jun Chen ◽  
...  

AbstractAtomic metal wires have great promise for practical applications in devices due to their unique electronic properties. Unfortunately, such atomic wires are extremely unstable. Here we fabricate stable atomic silver wires (ASWs) with appreciably unoccupied states inside the parallel tunnels of α-MnO2 nanorods. These unoccupied Ag 4d orbitals strengthen the Ag–Ag bonds, greatly enhancing the stability of ASWs while the presence of delocalized 5s electrons makes the ASWs conducting. These stable ASWs form a coherently oriented three-dimensional wire array of over 10 nm in width and up to 1 μm in length allowing us to connect it to nano-electrodes. Current-voltage characteristics of ASWs show a temperature-dependent insulator-to-metal transition, suggesting that the atomic wires could be used as thermal electrical devices.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1510 ◽  
Author(s):  
Mohammad Ehsan Taghavizadeh Yazdi ◽  
Simin Nazarnezhad ◽  
Seyed Hadi Mousavi ◽  
Mohammad Sadegh Amiri ◽  
Majid Darroudi ◽  
...  

The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.


1997 ◽  
Vol 494 ◽  
Author(s):  
V. Kiryukhin ◽  
D. Casa ◽  
B. Keimer ◽  
J. P. Hill ◽  
A. Vigliante ◽  
...  

ABSTRACTIn this work we report a study of the photoinduced insulator-to-metal transition in manganese oxide perovskites of the formula Pr1-xCaxMnO3. The transition is closely related to the magnetic field induced insulator-to-metal transition (CMR effect) observed in these materials. It is accompanied by a dramatic change in the magnetic properties and lattice structure: the material changes from an insulating charge-ordered canted antiferromagnet to a ferromagnetic metal. We present an investigation of the transport and structural properties of these materials over the course of the transition (which usually takes about an hour to complete). The current-voltage characteristics exhibited by the material during the transition are highly nonlinear, indicating a large inhomogeneity of the transitional state. Possible practical applications of this novel type of transition are briefly discussed. We also report a high-resolution x-ray diffraction study of the charge-ordering in these materials. The temperature dependent charge ordering structure observed in these compounds is more complex than previously reported.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Xiao-ming Liu ◽  
Rui Zhang ◽  
Jie Han ◽  
Sha Chen

Axisymmetric concave slopes, one special type of three-dimensional (3D) slopes, may be encountered in mining and civil engineering practice. Analysis of 3D slopes is generally complex and mostly relies on complicated numerical simulations. This paper proposes an elastoplastic solution for determining the additional shear resistances due to spatial effects of axisymmetric concave slopes. By incorporating the extra antislide forces, this paper proposes a simplified two-dimensional (2D) limit equilibrium procedure for the stability analysis of axisymmetric concave slopes. Combined with an iteration algorithm, the procedure can obtain the factors of safety for axisymmetric concave slopes in a simple and efficient way. Comparisons of the results from the proposed method and the numerical software FLAC3D are performed to demonstrate the validity of the proposed method for practical applications. Finally, the effects of several key parameters on the stability of axisymmetric concave slopes are investigated through a parametric study.


1985 ◽  
Vol 150 ◽  
pp. 451-465 ◽  
Author(s):  
F. H. Busse ◽  
H. Frick

Three-dimensional numerical solutions are obtained describing convection with a square lattice in a layer heated from below with no-slip top and bottom boundaries. The limit of infinite Prandtl number and a linear dependence of the viscosity on temperature are assumed. The stability of the three-dimensional solutions with respect to disturbances fitting the square lattice is analysed. It is shown that convection in the form of two-dimensional rolls is stable for low variations of viscosity, while square-pattern convection becomes stable when the viscosity contrast between upper and lower parts of the fluid layer is sufficiently strong. The theoretical results are in qualitative agreement with experimental observations.


2017 ◽  
Vol 21 (02) ◽  
pp. 144-151 ◽  
Author(s):  
Rahul Soman ◽  
Subramaniam Sujatha ◽  
Chellaiah Arunkumar

Two coordination polymers, 1 and 2 were developed utilizing the favorable hexacoordinated zinc(II) center in porphyrins. Single crystal X-ray structure analysis revealed that 1 forms one dimensional array whereas 2 display three dimensional network structures. Scanning tunnelling microscopic studies have shown that compounds 1 and 2 can tunnel the electric current through the crystal lattice indicating the conducting behavior of these solid crystals. The self-assembled solid crystal 2 has shown uniform conductance whereas 1 does not. The thermal stability of these crystals were determined by TGA analysis and found to be stable up to a higher temperature of 400°C. A temperature dependent current–voltage analysis were also performed and the results indicate that the conductivity of crystals 1 and 2increases with increase in temperature. It is found that the temperature coefficient of resistance ([Formula: see text] at 100°C for 1 and 2 as -0.009 and 0.017 K[Formula: see text].


Author(s):  
Abdelkrim Merah ◽  
Ridha Kelaiaia ◽  
Faiza Mokhtari

Abstract The Taylor-Couette flow between two rotating coaxial cylinders remains an ideal tool for understanding the mechanism of the transition from laminar to turbulent regime in rotating flow for the scientific community. We present for different Taylor numbers a set of three-dimensional numerical investigations of the stability and transition from Couette flow to Taylor vortex regime of a viscous incompressible fluid (liquid sodium) between two concentric cylinders with the inner one rotating and the outer one at rest. We seek the onset of the first instability and we compare the obtained results for different velocity rates. We calculate the corresponding Taylor number in order to show its effect on flow patterns and pressure field.


2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


Author(s):  
Tianjiao Wang ◽  
Jun Zhao ◽  
Chuanxin Weng ◽  
Tong Wang ◽  
Yayun Liu ◽  
...  

Shape memory polymers (SMPs) that change shapes as designed by external stimuli have become one of the most promising materials as actuators, sensors, and deployable devices. However, their practical applications...


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 735
Author(s):  
Fortunato Pezzimenti ◽  
Hichem Bencherif ◽  
Giuseppe De Martino ◽  
Lakhdar Dehimi ◽  
Riccardo Carotenuto ◽  
...  

A numerical simulation study accounting for trap and defect effects on the current-voltage characteristics of a 4H-SiC-based power metal-oxide-semiconductor field effect transistor (MOSFET) is performed in a wide range of temperatures and bias conditions. In particular, the most penalizing native defects in the starting substrate (i.e., EH6/7 and Z1/2) as well as the fixed oxide trap concentration and the density of states (DoS) at the 4H-SiC/SiO2 interface are carefully taken into account. The temperature-dependent physics of the interface traps are considered in detail. Scattering phenomena related to the joint contribution of defects and traps shift the MOSFET threshold voltage, reduce the channel mobility, and penalize the device current capabilities. However, while the MOSFET on-state resistance (RON) tends to increase with scattering centers, the sensitivity of the drain current to the temperature decreases especially when the device is operating at a high gate voltage (VGS). Assuming the temperature ranges from 300 K to 573 K, RON is about 2.5 MΩ·µm2 for VGS > 16 V with a percentage variation ΔRON lower than 20%. The device is rated to perform a blocking voltage of 650 V.


Author(s):  
David Quéré ◽  
Mathilde Reyssat

Superhydrophobic materials recently attracted a lot of attention, owing to the potential practical applications of such surfaces—they literally repel water, which hardly sticks to them, bounces off after an impact and slips on them. In this short review, we describe how water repellency arises from the presence of hydrophobic microstructures at the solid surface. A drop deposited on such a substrate can float above the textures, mimicking at room temperature what happens on very hot plates; then, a vapour layer comes between the solid and the volatile liquid, as described long ago by Leidenfrost. We present several examples of superhydrophobic materials (either natural or synthetic), and stress more particularly the stability of the air cushion—the liquid could also penetrate the textures, inducing a very different wetting state, much more sticky, due to the possibility of pinning on the numerous defects. This description allows us to discuss (in quite a preliminary way) the optimal design to be given to a solid surface to make it robustly water repellent.


Sign in / Sign up

Export Citation Format

Share Document