scholarly journals Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lotte Korell ◽  
Harald Auge ◽  
Jonathan M. Chase ◽  
W. Stanley Harpole ◽  
Tiffany M. Knight

AbstractMitigating and adapting to climate change requires an understanding of the magnitude and nature by which climate change will influence the diversity of plants across the world’s ecosystems. Experiments can causally link precipitation change to plant diversity change, however, these experiments vary in their methods and in the diversity metrics reported, making synthesis elusive. Here, we explicitly account for a number of potentially confounding variables, including spatial grain, treatment magnitude and direction and background climatic conditions, to synthesize data across 72 precipitation manipulation experiments. We find that the effects of treatments with higher magnitude of precipitation manipulation on plant diversity are strongest at the smallest spatial scale, and in drier environments. Our synthesis emphasizes that quantifying differential responses of ecosystems requires explicit consideration of spatial grain and the magnitude of experimental manipulation. Given that diversity provides essential ecosystem services, especially in dry and semi-dry areas, our finding that these dry ecosystems are particular sensitive to projected changes in precipitation has important implications for their conservation and management.

Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Helder Fraga ◽  
Marco Moriondo ◽  
Luisa Leolini ◽  
João A. Santos

The olive tree (Olea europaea L.) is an ancient traditional crop in the Mediterranean Basin. In the Mediterranean region, traditional olive orchards are distinguishable by their prevailing climatic conditions. Olive trees are indeed considered one of the most suitable and best-adapted species to the Mediterranean-type climate. However, new challenges are predicted to arise from climate change, threatening this traditional crop. The Mediterranean Basin is considered a climate change “hotspot,” as future projections hint at considerable warming and drying trends. Changes in olive tree suitability have already been reported over the last few decades. In this context, climate change may become particularly challenging for olive growers. The growing evidence for significant climate change in the upcoming decades urges adaptation measures to be taken. To effectively cope with the projected changes, both short and long-term adaptation strategies must be timely planned by the sector stakeholders and decision-makers to adapt for a warmer and dryer future. The current manuscript is devoted to illustrating the main impacts of climate change on olive tree cultivation in the Mediterranean Basin, by reviewing the most recent studies on this subject. Additionally, an analysis of possible adaptation strategies against the potentially negative impacts of climate change was also performed.


2020 ◽  
Author(s):  
Sebastian Fiedler ◽  
José A.F. Monteiro ◽  
Kristin B. Hulvey ◽  
Rachel J. Standish ◽  
Michael P. Perring ◽  
...  

ABSTRACTEcological restoration increasingly aims at improving ecosystem multifunctionality and making landscapes resilient to future threats, especially in biodiversity hotspots such as Mediterranean-type ecosystems. Successful realisation of such a strategy requires a fundamental mechanistic understanding of the link between ecosystem plant composition, plant traits and related ecosystem functions and services, as well as how climate change affects these relationships. An integrated approach of empirical research and simulation modelling with focus on plant traits can allow this understanding.Based on empirical data from a large-scale restoration project in a Mediterranean-type climate in Western Australia, we developed and validated the spatially explicit simulation model ModEST, which calculates coupled dynamics of nutrients, water and individual plants characterised by traits. We then simulated all possible combinations of eight plant species with different levels of diversity to assess the role of plant diversity and traits on multifunctionality, the provision of six ecosystem functions (covering three ecosystem services), as well as trade-offs and synergies among the functions under current and future climatic conditions.Our results show that multifunctionality cannot fully be achieved because of trade-offs among functions that are attributable to sets of traits that affect functions differently. Our measure of multifunctionality was increased by higher levels of planted species richness under current, but not future climatic conditions. In contrast, single functions were differently impacted by increased plant diversity. In addition, we found that trade-offs and synergies among functions shifted with climate change.Synthesis and application. Our results imply that restoration ecologists will face a clear challenge to achieve their targets with respect to multifunctionality not only under current conditions, but also in the long-term. However, once ModEST is parameterized and validated for a specific restoration site, managers can assess which target goals can be achieved given the set of available plant species and site-specific conditions. It can also highlight which species combinations can best achieve long-term improved multifunctionality due to their trait diversity.


Author(s):  
Nathalie de Noblet-Ducoudré ◽  
Andrew J. Pitman

The land surface is where humans live and where they source their water and food. The land surface plays an important role in climate and anthropogenic climate change both as a driver of change and as a system that responds to change. Soils and vegetation influence the exchanges of water, energy and carbon between the land and the overlying atmosphere and thus contribute to the variability and the evolution of climate. But the role of the land in climate is scale dependent which means different processes matter on different timescales and over different spatial scales. Climate change alters the functioning of the land with changes in the seasonal cycle of ecosystem growth, in the extent of forests, the melt of permafrost, the magnitude and frequency of disturbances such as fire, drought, … Those changes feedback into climate at both the global and the regional scales. In addition, humans perturb the land conditions via deforestation, irrigation, urbanization, … and this directly affects climatic conditions at the local to regional scales with also sometimes global consequences via the release of greenhouse gases. Not accounting for land surface processes in climate modelling, whatever the spatial scale, will result in biases in the climate simulations.


2019 ◽  
Vol 26 (2) ◽  
pp. 75-80
Author(s):  
Kuldeep Singh Dogra ◽  
◽  
Sushmita Uniyal ◽  
Kumar Ambrish ◽  
◽  
...  

Indian Western Himalaya has a rich plant diversity/ bio-resources due to the large variations in the altitude (300 to 6000 ms) and climatic conditions from tropical, temperate to alpine. The paper sheds light on the issues and challenges of climate change in the Western Himalaya; its impact on the plant diversity (wild plants, crops, fruits); loss of plant diversity and livelihood of the local communities; impact on the phenology of plant species; possible mitigation strategies to combat the impact of climate change. The Western Himalayan region has a rich diversity of plant diversity or bio resources. These bio resources (wild plants, crops, fruits) have been used by the local communities in the form of traditional medicines and foods from pre-historic periods or since the settlement of human communities in this region. These communities used these bio-resources as a source of income by their cultivation and selling in the markets. They are also involved in the traditional agriculture and horticulture practices and for that dependent on the climatic conditions (rate of precipitation, temperature, humidity) throughout the year. Hence stable environment conditions a pre requisite for better production and productivity. But in the last 100 years an increased in the temperature on earth brought large variation in the climate of Himalayan region too. The extreme climatic conditions will make Himalayan ecosystem more fragile, less productive and more prone towards disasters or natural calamities. Long term planning is required to understand the impact of climate change in the Western Himalaya along with some new strategies to mitigate its impact.


1996 ◽  
Vol 20 (3) ◽  
pp. 253-272 ◽  
Author(s):  
John A. Kupfer ◽  
David M. Cairns

Because of the difficulties involved with separating natural fluctuations in climatic variables from possible directional changes related to human activities (e.g., heightened atmospheric CO2 concentrations related to fossil fuel consumption), some researchers have focused on developing alternative indicators to detect hypothesized climate changes. It has, for example, been suggested that the locations of ecotones, transitions between adjacent ecosystems or biomes, should be monitored. It is assumed that changes in climate, especially increases in atmospheric temperature, will result in shifts in the location (altitude or latitude) of ecotones as plants respond to the newly imposed climatic conditions. In this article, we address the use of two montane ecotones, the alpine tree-line ecotone and the deciduous/Boreal forest ecotone, in monitoring global climatic change. In so doing, we 1) outline the factors that create and maintain each ecotone's position at a given location; 2) assess the projected response of the ecotones to various aspects of global warming; and 3) discuss the usefulness of both ecotones as indicators of global climate change. While it is likely that extended periods of directional climate change would bring about an altitudinal shift in the ranges of montane species and the associated ecotones, we question whether the response at either ecotone will be at a timescale useful for detecting climate change (a few decades) owing to disequilibrium related to upslope edaphic limitations and competitive interactions with established canopy and subcanopy indi viduals. Further, limitations related to the prediction of the complex and interacting effects of projected changes in temperature, precipitation and site water balance on photosynthetic pro cesses of plant species raise uncertainties about the expected responses of both ecotones.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Arie Staal ◽  
Ingo Fetzer ◽  
Lan Wang-Erlandsson ◽  
Joyce H. C. Bosmans ◽  
Stefan C. Dekker ◽  
...  

Abstract Tropical forests modify the conditions they depend on through feedbacks at different spatial scales. These feedbacks shape the hysteresis (history-dependence) of tropical forests, thus controlling their resilience to deforestation and response to climate change. Here, we determine the emergent hysteresis from local-scale tipping points and regional-scale forest-rainfall feedbacks across the tropics under the recent climate and a severe climate-change scenario. By integrating remote sensing, a global hydrological model, and detailed atmospheric moisture tracking simulations, we find that forest-rainfall feedback expands the geographic range of possible forest distributions, especially in the Amazon. The Amazon forest could partially recover from complete deforestation, but may lose that resilience later this century. The Congo forest currently lacks resilience, but is predicted to gain it under climate change, whereas forests in Australasia are resilient under both current and future climates. Our results show how tropical forests shape their own distributions and create the climatic conditions that enable them.


2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Ankit Bhatt ◽  
Ajay Pradhan

Streamflow and rainfall estimates have utmost importance to compute detailed water availability and hydrology for many sectors such as agriculture, water management, and food security. There are various models developed over the years for runoff estimation but among them only a few models incorporate climate change factors. Snowmelt and rainfall are the main sources of surface as well as groundwater resource and the main inputs in runoff models for estimation of streamflow. There are numerous factors which leads to climate change which intern affects the distribution on rainfall on spatial and temporal scales and the rate of melting of snows in the Himalayan region. Uncertainties in projected changes in the hydrological systems arise from internal variability in the climatic system, uncertainty about future greenhouse gas and aerosol emissions, the translations of these emissions into climate change by global climate models, and hydrological model uncertainty. Projections become less consistent between models as the spatial scale decreases. The uncertainty of climate model projections for freshwater assessments is often taken into account by using multi-model ensembles. The multi-model ensemble approach is, however, not a guarantee of reducing uncertainty in mathematical models. In recent years the floods have occurred due to high intensity rainfall occurred in a very short time, but in several cases the flooding has also occurred because the rainfall has fallen at times when all the storage systems have not been emptied after the previous rainfall. This is what we call coupled rainfall. There is currently no recommendation for how to take coupled rainfall account when applying the climate change scenario. It is estimated that such changes represent at a large scale, and cannot be applied to shorter temporal and smaller spatial scales. In areas where rainfall and runoff are very low (e.g., desert areas), small changes in runoff can lead to large percentage changes. In some regions, the sign of projected changes in runoff differs from recently observed trends. Moreover, in some areas with projected increases in runoff, different seasonal effects are expected, such as increased wet season runoff and decreased dry season runoff. Studies using results from fewer climate models can be considerably different from the other models


2012 ◽  
Vol 20 (4) ◽  
pp. 220-311 ◽  
Author(s):  
Jeffrey A. Hutchings ◽  
Isabelle M. Côté ◽  
Julian J. Dodson ◽  
Ian A. Fleming ◽  
S. Jennings ◽  
...  

Climate change, fishing, and aquaculture have affected and will continue to influence Canadian marine biodiversity, albeit at different spatial scales. The Arctic is notably affected by reduced quality and quantity of sea ice caused by global warming, and by concomitant and forecasted changes in ocean productivity, species ecology, and human activity. The Atlantic has been especially impacted by severe overfishing and human-induced alterations to food webs. Climate change, fishing, and aquaculture have all affected, to varying degrees, biodiversity on Canada’s Pacific coast. Past and projected trends in key biodiversity stressors reveal marked change. Oceanographic trends include increasing surface water temperatures, reduced salinity, increased acidity, and, in some areas, reduced oxygen. Reductions in Canada’s fishery catches (those in 2009 were half those of the late 1980s), followed by reductions in fishing pressure, are associated with dramatic changes in the species composition of commercial catches in the Atlantic (formerly groundfish, now predominantly invertebrates and pelagic fish) and the Pacific (formerly salmon, now predominantly groundfish). Aquaculture, dominated by the farming of Atlantic salmon, grew rapidly from the early 1980s until 2002 and has since stabilized. Climate change is forecast to affect marine biodiversity by shifting species distributions, changing species community composition, decoupling the timing of species’ resource requirements and resource availability, and reducing habitat quality. Harvest-related reductions in fish abundance, many by 80% or more, coupled with fishing-induced changes to food webs, are impairing the capacity of species to recover or even persist. Open-sea aquaculture net pens affect biodiversity by (i) habitat alteration resulting from organic wastes, chemical inputs, and use of nonnative species; (ii) exchange of pathogens between farmed and wild species; and (iii) interbreeding between wild fish and farmed escapees. Physical and biological changes in the oceans, along with direct anthropogenic impacts, are modifying Canadian marine biodiversity with implications for food security and the social and economic well-being of coastal communities. To assess the consequences of changes in biodiversity for Canada’s oceans and society, it is necessary to understand the current state of marine biodiversity and how it might be affected by projected changes in climate and human uses.


2020 ◽  
Author(s):  
Arie Staal ◽  
Ingo Fetzer ◽  
Lan Wang-Erlandsson ◽  
Joyce Bosmans ◽  
Stefan Dekker ◽  
...  

<p>Tropical forests modify the conditions they depend on through feedbacks on different spatial scales. These feedbacks shape the hysteresis (history-dependence) of tropical forests, thus controlling their resilience to deforestation and response to climate change. Here we present the emergent hysteresis from local-scale tipping points and regional-scale forest-rainfall feedbacks across the tropics under the recent climate and a severe climate-change scenario. By integrating remote sensing, a global hydrological model, and detailed atmospheric moisture tracking simulations, we find that forest-rainfall feedback expands the range of possible forest distributions especially in the Amazon. The Amazon forest could partially recover from complete deforestation, but may lose that resilience later this century. The Congo forest lacks resilience, but gains it under climate change, whereas forests in Australasia are resilient under both current and future climates. Our results show how tropical forests shape their own distributions and create the climatic conditions that enable them.</p>


This article presents the results of twelve-year trials of the Region and Ryabota simple hybrids and the three-line hybrid Kameniar breeding laboratory of IOC NAANU hybrid labs, and analyzes their adaptation to ongoing climate change. The purpose of our work was to determine the formation of major economic traits in sunflower hybrids, depending on the agro-climatic conditions of the year.


Sign in / Sign up

Export Citation Format

Share Document