scholarly journals Targeting Gα13-integrin interaction ameliorates systemic inflammation

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ni Cheng ◽  
Yaping Zhang ◽  
M. Keegan Delaney ◽  
Can Wang ◽  
Yanyan Bai ◽  
...  

AbstractSystemic inflammation as manifested in sepsis is an excessive, life-threatening inflammatory response to severe bacterial or viral infection or extensive injury. It is also a thrombo-inflammatory condition associated with vascular leakage/hemorrhage and thrombosis that is not effectively treated by current anti-inflammatory or anti-thrombotic drugs. Here, we show that MB2mP6 peptide nanoparticles, targeting the Gα13-mediated integrin “outside-in” signaling in leukocytes and platelets, inhibited both inflammation and thrombosis without causing hemorrhage/vascular leakage. MB2mP6 improved mouse survival when infused immediately or hours after onset of severe sepsis. Furthermore, platelet Gα13 knockout inhibited septic thrombosis whereas leukocyte Gα13 knockout diminished septic inflammation, each moderately improving survival. Dual platelet/leukocyte Gα13 knockout inhibited septic thrombosis and inflammation, further improving survival similar to MB2mP6. These results demonstrate that inflammation and thrombosis independently contribute to poor outcomes and exacerbate each other in systemic inflammation, and reveal a concept of dual anti-inflammatory/anti-thrombotic therapy without exacerbating vascular leakage.

Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1981 ◽  
Author(s):  
Qiufen Mo ◽  
Aikun Fu ◽  
Lingli Deng ◽  
Minjie Zhao ◽  
Yang Li ◽  
...  

Glycerol monolaurate (GML) has potent antimicrobial and anti-inflammatory activities. The present study aimed to assess the dose-dependent antimicrobial-effects of GML on the gut microbiota, glucose and lipid metabolism and inflammatory response in C57BL/6 mice. Mice were fed on diets supplemented with GML at dose of 400, 800 and 1600 mg kg−1 for 4 months, respectively. Results showed that supplementation of GML, regardless of the dosages, induced modest body weight gain without affecting epididymal/brown fat pad, lipid profiles and glycemic markers. A high dose of GML (1600 mg kg−1) showed positive impacts on the anti-inflammatory TGF-β1 and IL-22. GML modulated the indigenous microbiota in a dose-dependent manner. It was found that 400 and 800 mg kg−1 GML improved the richness of Barnesiella, whereas a high dosage of GML (1600 mg kg−1) significantly increased the relative abundances of Clostridium XIVa, Oscillibacter and Parasutterella. The present work indicated that GML could upregulate the favorable microbial taxa without inducing systemic inflammation and dysfunction of glucose and lipid metabolism.


2021 ◽  
Vol 22 (4) ◽  
pp. 1682
Author(s):  
Bálint Botz ◽  
Gábor Kriszta ◽  
Kata Bölcskei ◽  
Ádám István Horváth ◽  
Attila Mócsai ◽  
...  

Capsaicin-sensitive peptidergic sensory nerves play complex, mainly protective regulatory roles in the inflammatory cascade of the joints via neuropeptide mediators, but the mechanisms of the hyperacute arthritis phase has not been investigated. Therefore, we studied the involvement of these afferents in the early, “black box” period of a rheumatoid arthritis (RA) mouse model. Capsaicin-sensitive fibres were defunctionalized by pretreatment with the ultrapotent capsaicin analog resiniferatoxin and arthritis was induced by K/BxN arthritogenic serum. Disease severity was assessed by clinical scoring, reactive oxygen species (ROS) burst by chemiluminescent, vascular permeability by fluorescent in vivo imaging. Contrast-enhanced magnetic resonance imaging was used to correlate the functional and morphological changes. After sensory desensitization, both early phase ROS-burst and vascular leakage were significantly enhanced, which was later followed by the increased clinical severity scores. Furthermore, the early vascular leakage and ROS-burst were found to be good predictors of later arthritis severity. We conclude that the anti-inflammatory role of peptidergic afferents depends on their activity in the hyperacute phase, characterized by decreased cellular and vascular inflammatory components presumably via anti-inflammatory neuropeptide release. Therefore, these fibres might serve as important gatekeepers in RA.


2014 ◽  
Vol 116 (5) ◽  
pp. 398-413 ◽  
Author(s):  
Joao Rocha ◽  
Maria Eduardo-Figueira ◽  
Andreia Barateiro ◽  
Adelaide Fernandes ◽  
Dora Brites ◽  
...  

mSphere ◽  
2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Amelia E. Barber ◽  
Brittany A. Fleming ◽  
Matthew A. Mulvey

ABSTRACT Sepsis is a life-threatening systemic inflammatory condition that is initiated by the presence of microorganisms in the bloodstream. In the United States, sepsis due to ExPEC and other pathogens kills well over a quarter of a million people each year and is associated with tremendous health care costs. A high degree of heterogeneity in the signs and symptomology of sepsis makes this disease notoriously difficult to effectively diagnose and manage. Here, using a zebrafish model of sepsis, we find that similarly lethal but genetically distinct ExPEC isolates can elicit notably disparate host responses. These variances are in part due to differences in the levels and types of flagellin that are expressed by the infecting ExPEC strains. A better understanding of the variable impact that bacterial factors like flagellin have on host responses during sepsis could lead to improved diagnostic and therapeutic approaches to these often deadly infections. In individuals with sepsis, the infecting microbes are commonly viewed as generic inducers of inflammation while the host background is considered the primary variable affecting disease progression and outcome. To study the effects of bacterial strain differences on the maladaptive immune responses that are induced during sepsis, we employed a novel zebrafish embryo infection model using extraintestinal pathogenic Escherichia coli (ExPEC) isolates. These genetically diverse pathogens are a leading cause of sepsis and are becoming increasingly dangerous because of the rise of multidrug-resistant strains. Zebrafish infected with ExPEC isolates exhibit many of the pathophysiological features seen in septic human patients, including dysregulated inflammatory responses (cytokine storms), tachycardia, endothelial leakage, and progressive edema. However, only a limited subset of ExPEC isolates can trigger a sepsis-like state and death of the host when introduced into the bloodstream. Mirroring the situation in human patients, antibiotic therapy reduced ExPEC titers and improved host survival rates but was only effective within limited time frames that varied, depending on the infecting pathogen. Intriguingly, we find that phylogenetically distant but similarly lethal ExPEC isolates can stimulate markedly different host transcriptional responses, including disparate levels of inflammatory mediators. These differences correlate with the amounts of bacterial flagellin expression during infection, as well as differential activation of Toll-like receptor 5 by discrete flagellar serotypes. Altogether, this work establishes zebrafish as a relevant model of key aspects of human sepsis and highlights the ability of genetically distinct ExPEC isolates to induce divergent host responses independently of baseline host attributes. IMPORTANCE Sepsis is a life-threatening systemic inflammatory condition that is initiated by the presence of microorganisms in the bloodstream. In the United States, sepsis due to ExPEC and other pathogens kills well over a quarter of a million people each year and is associated with tremendous health care costs. A high degree of heterogeneity in the signs and symptomology of sepsis makes this disease notoriously difficult to effectively diagnose and manage. Here, using a zebrafish model of sepsis, we find that similarly lethal but genetically distinct ExPEC isolates can elicit notably disparate host responses. These variances are in part due to differences in the levels and types of flagellin that are expressed by the infecting ExPEC strains. A better understanding of the variable impact that bacterial factors like flagellin have on host responses during sepsis could lead to improved diagnostic and therapeutic approaches to these often deadly infections. Podcast: A podcast concerning this article is available.


CNS Spectrums ◽  
2006 ◽  
Vol 11 (5) ◽  
pp. 352-354 ◽  
Author(s):  
Alby Elias ◽  
Subramoniam Madhusoodanan ◽  
David Pudukkadan ◽  
James T. Antony

ABSTRACTCutaneous rashes and eruptions can be caused by many medications, including carbamazepine. The presentation can be varied depending on severity. Cutaneous eruptions occur in 3% of individuals administered carbamazepine. Angioedema, a rare side effect of carbamazepine, involves vascular leakage in dermis and subcutis mediated by immunoglobulin E and/or bradykinins. Angioedema is more common in females and in the third decade of life. We report the case of a 27-year-old Indian woman who developed maculopapular rash and angioedema secondary to carbamazepine administration. The patient responded successfully to withdrawal of the drug and treatment with antihistamines. Due to the potentially life-threatening complications of this condition and the increasing use of anticonvulsants in the treatment of mood disorders, psychiatrists must be aware of the diagnosis and treatment of this condition.


2006 ◽  
Vol 66 (2) ◽  
pp. 560-567 ◽  
Author(s):  
Meritxell Arenas ◽  
Fèlix Gil ◽  
Meritxell Gironella ◽  
Víctor Hernández ◽  
Sandra Jorcano ◽  
...  

2020 ◽  
Author(s):  
Hongxia Mei ◽  
Ying Tao ◽  
Tianhao Zhang ◽  
Feng Qi

Abstract Background: Acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS) are critical life-threatening syndromes characterized by the infiltration of a large number of neutrophils that lead to an excessive inflammatory response. Emodin (Emo) is a naturally occurring anthraquinone derivative and an active ingredient of Chinese medicine. It is believed to have anti-inflammatory effects. In this study, we examined the impact of Emo on the pulmonary inflammatory response and the neutrophil function in a rat model of lipopolysaccharide (LPS)-induced ALI.Results: Treatment with Emo protected rat against LPS-induced ALI. Compared to untreated rat, Emo-treated rat exhibited significantly ameliorated lung pathological changes and decreased tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). However, Emo has no protective effect on the rat model of acute lung injury with neutrophil deficiency. In addition, treatment with Emo enhanced the bactericidal capacity of LPS-induced neutrophils via the up-regulation of the ability of neutrophils to phagocytize bacteria and generate neutrophil extracellular traps (NETs). Emo also downregulated the neutrophil respiratory burst and the expression of reactive oxygen species (ROS) in LPS-stimulated neutrophils, alleviating the damage of neutrophils to surrounding tissues. Finally, Emo can accelerate the resolution of inflammation by promoting apoptosis of neutrophils. Conclusion: Our results provide the evidence that Emo could ameliorates LPS-induced ALI via its anti-inflammatory action by modulating the function of neutrophils. Emo may be a promising preventive and therapeutic agent in the treatment of ALI.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A9-A10
Author(s):  
Zahra Sarrafan-Chaharsoughi ◽  
Jordan A Levine ◽  
Tushar P Patel ◽  
Sheila M Brady ◽  
K Karthik Chivukula ◽  
...  

Abstract Background: Obesity-associated inflammation promotes adipose tissue (AT) dysfunction and contributes to the progression of type 2 diabetes and cardiovascular disease. Recent clinical studies have demonstrated that colchicine may improve metabolic and cardiovascular outcomes; however, colchicine’s effects on metabolic and inflammatory measures within AT remain unclear. Methods: The aim of this study was to examine if colchicine’s anti-inflammatory effects would improve measures of lipolysis and immune cell populations in subcutaneous AT (SAT). This is a secondary analysis of a double-blind, randomized, placebo-controlled pilot study in which 40 nondiabetic adults with obesity and metabolic syndrome (MetS) were randomized to colchicine 0.6mg or placebo twice daily for 3 months. Blood samples for insulin, glucose, and free fatty acids were collected in the fasted state and during a frequently-sampled intravenous glucose tolerance test. Noninsulin-suppressible (l0), insulin-suppressible (l2), and maximal (l0+l2) lipolysis rates were calculated by minimal model analysis. Body composition was determined by DXA. SAT immune cell populations were characterized by flow cytometry fluorescence-activated single cell sorting of the stromovascular fractions obtained after collagenase digestion of SAT samples obtained using a mini-liposuction technique pre- and post-intervention. Results: Data from 18 subjects in the colchicine group (Mean ± SD: age 48.4 ± 13.5 y; BMI 39.3 ± 6.3 kg/m2; sex: female 72.2%) and 18 subjects in the placebo group (age 44.7 ± 10.2 y; BMI 41.8 ± 8.2 kg/m2; sex: female 77.8%) were available for this study. Colchicine treatment significantly reduced l2 (p = 0.04) and l0+l2 (p = 0.04) versus placebo. These changes were significantly associated with reductions in systemic inflammation, including the changes in high-sensitivity C-reactive protein concentrations, white blood cell count, circulating monocyte and neutrophil populations, and the neutrophil-lymphocyte ratio (p’s < 0.015). Colchicine did not significantly alter SAT immune cell population distributions (p’s > 0.05). Conclusions: In adults with obesity and MetS, colchicine may improve insulin action at the level of AT. These improvements were positively associated with the suppression of systemic inflammation. However, no local AT inflammatory cell populations were significantly affected by colchicine use in our study, suggesting that colchicine’s systemic, rather than local, anti-inflammatory effects may be more consequential in ameliorating AT metabolic pathways in MetS. Further studies are warranted to elucidate the biological mechanisms underlying colchicine’s effects in AT, as these investigations could potentially shed light on treatments to improve metabolic outcomes in human obesity.


2021 ◽  
Author(s):  
Reinier Gesto-Borroto ◽  
Gabriela Meneses ◽  
Alejandro Espinosa-Cerón ◽  
Guillermo Granados ◽  
Jacquelynne Cervantes-Torres ◽  
...  

Abstract The genus Galphimia is widely distributed in Mexico, and is represented by 22 species, including medicinal species. The sedative and anti-inflammatory effects of galphimines produced by the species Galphimia glauca have been documented. Formerly, molecular studies using DNA barcodes demonstrated that nine populations botanically classified as Galphimia glauca belong to four different species of the genus Galphimia, and that only one exhibited the sedative properties; however, all the collected species showed anti-inflammatory activity. Other bioactive compounds like quercetin, galphins, galphimidins and glaucacetalins have been identified from methanolic extracts of plants botanically classified as Galphimia glauca. The aim of this work was to determine the anti-inflammatory activity of methanolic extracts of nine collected Galphimia spp. populations grown in Mexico. The possible modes of action were analyzed by evaluating the inhibition of LPS-induced inflammation processes both in vitro and in vivo. The nine populations were evaluated by an in vitro model using RAW 264.7 murine macrophage cells, and two populations (a galphimine-producing and a non-galphimine-producing population) were selected for the in vivo experiments of systemic inflammation and neuroinflammation in mice. Results suggest that an anti-inflammatory in vitro effect was present in all the studied populations, evidenced by the inhibition of nitrite production. An inhibitory systemic inflammation in mice was exerted by the two analyzed populations. In the neuroinflammation model, the anti-inflammatory effect was demonstrated in methanolic extract of the non-galphimine-producing population. For the populations of Galphimia spp. studied herein, the anti-inflammatory effect could not be correlated to the presence of galphimines.


Author(s):  
Ashwin Reddy ◽  
Sarah Nethercott ◽  
Rudolph Duehmke ◽  
Sunil Nair ◽  
Omar Abdul-Samad

Pericardial inflammation is a recognised feature of coronavirus disease (COVID-19). The authors herein present the case of a female with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection who developed a large and life-threatening pericardial effusion over a few days following the onset of pericarditis, despite prompt commencement of treatment. This was successfully drained, and she was discharged in stable condition on oral nonsteroidal anti-inflammatory drugs and colchicine.At 6-week follow-up she had made a full recovery, and repeat echocardiography demonstrated no recurrence of effusion or evidence of constrictive physiology.


Sign in / Sign up

Export Citation Format

Share Document