scholarly journals Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xianwen Liu ◽  
Zheng Gong ◽  
Alexander W. Bruch ◽  
Joshua B. Surya ◽  
Juanjuan Lu ◽  
...  

AbstractFrequency microcombs, alternative to mode-locked laser and fiber combs, enable miniature rulers of light for applications including precision metrology, molecular fingerprinting and exoplanet discoveries. To enable frequency ruling functions, microcombs must be stabilized by locking their carrier-envelope offset frequency. So far, the microcomb stabilization remains compounded by the elaborate optics external to the chip, thus evading its scaling benefit. To address this challenge, here we demonstrate a nanophotonic chip solution based on aluminum nitride thin films, which simultaneously offer optical Kerr nonlinearity for generating octave soliton combs and quadratic nonlinearity for enabling heterodyne detection of the offset frequency. The agile dispersion control of crystalline aluminum nitride photonics permits high-fidelity generation of solitons with features including 1.5-octave spectral span, dual dispersive waves, and sub-terahertz repetition rates down to 220 gigahertz. These attractive characteristics, aided by on-chip phase-matched aluminum nitride waveguides, allow the full determination of the offset frequency. Our proof-of-principle demonstration represents an important milestone towards fully integrated self-locked microcombs for portable optical atomic clocks and frequency synthesizers.

2021 ◽  
Author(s):  
Xianwen Liu ◽  
Zheng Gong ◽  
Alexander Bruch ◽  
Joshua Surya ◽  
Juanjuan Lu ◽  
...  

Abstract Frequency microcombs, successors to mode-locked laser and fiber combs, enable miniature rulersof light for applications including precision metrology, molecular fingerprinting and exoplanet discoveries. To enable frequency ruling functions, microcombs must be stabilized by locking their carrier-envelop offset frequency. So far, the microcomb stabilization remains compounded by the elaborate optics external to the chip, thus evading its scaling benefit. To address this challenge, here we demonstrate a nanophotonic chip solution based on aluminum nitride thin films, which simultaneously offer optical Kerr nonlinearity for generating octave soliton combs and Pockels nonlinearity for enabling heterodyne detection of the offset frequency. The agile dispersion control of crystalline III-Nitride photonics permits high-fidelity generation of solitons with features including 1.5-octave spectral span, dual dispersive waves and sub-terahertz repetition rates down to 220 gigahertz. These attractive characteristics, aided by on-chip phase-matched aluminum nitride waveguides, allow the full determination of the offset frequency. Our proof-of-principle demonstration represents an important milestone towards fully-integrated self-locked microcombs for portable optical atomic clocks and frequency synthesizers


Author(s):  
Fabio Aquilino ◽  
Francesco G. Della Corte ◽  
Letizia Fragomeni ◽  
Massimo Merenda ◽  
Fabio Zito

Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 68
Author(s):  
Woorham Bae ◽  
Sung-Yong Cho ◽  
Deog-Kyoon Jeong

This paper presents a fully integrated Peripheral Component Interconnect (PCI) Express (PCIe) Gen4 physical layer (PHY) transmitter. The prototype chip is fabricated in a 28 nm low-power CMOS process, and the active area of the proposed transmitter is 0.23 mm2. To enable voltage scaling across wide operating rates from 2.5 Gb/s to 16 Gb/s, two on-chip supply regulators are included in the transmitter. At the same time, the regulators maintain the output impedance of the transmitter to meet the return loss specification of the PCIe, by including replica segments of the output driver and reference resistance in the regulator loop. A three-tap finite-impulse-response (FIR) equalization is implemented and, therefore, the transmitter provides more than 9.5 dB equalization which is required in the PCIe specification. At 16 Gb/s, the prototype chip achieves energy efficiency of 1.93 pJ/bit including all the interface, bias, and built-in self-test circuits.


2021 ◽  
Vol 11 (2) ◽  
pp. 22
Author(s):  
Umberto Ferlito ◽  
Alfio Dario Grasso ◽  
Michele Vaiana ◽  
Giuseppe Bruno

Charge-Based Capacitance Measurement (CBCM) technique is a simple but effective technique for measuring capacitance values down to the attofarad level. However, when adopted for fully on-chip implementation, this technique suffers output offset caused by mismatches and process variations. This paper introduces a novel method that compensates the offset of a fully integrated differential CBCM electronic front-end. After a detailed theoretical analysis of the differential CBCM topology, we present and discuss a modified architecture that compensates mismatches and increases robustness against mismatches and process variations. The proposed circuit has been simulated using a standard 130-nm technology and shows a sensitivity of 1.3 mV/aF and a 20× reduction of the standard deviation of the differential output voltage as compared to the traditional solution.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1018
Author(s):  
Giuseppe Fiorentino ◽  
Ben Jones ◽  
Sophie Roth ◽  
Edith Grac ◽  
Murali Jayapala ◽  
...  

A composite, capillary-driven microfluidic system suitable for transmitted light microscopy of cells (e.g., red and white human blood cells) is fabricated and demonstrated. The microfluidic system consists of a microchannels network fabricated in a photo-patternable adhesive polymer on a quartz substrate, which, by means of adhesive bonding, is then connected to a silicon microfluidic die (for processing of the biological sample) and quartz die (to form the imaging chamber). The entire bonding process makes use of a very low temperature budget (200 °C). In this demonstrator, the silicon die consists of microfluidic channels with transition structures to allow conveyance of fluid utilizing capillary forces from the polymer channels to the silicon channels and back to the polymer channels. Compared to existing devices, this fully integrated platform combines on the same substrate silicon microfluidic capabilities with optical system analysis, representing a portable and versatile lab-on-chip device.


2012 ◽  
Author(s):  
Martin Popp ◽  
Beat De Coi ◽  
Markus Thalmann ◽  
Radoslav Gancarz ◽  
Pascal Ferrat ◽  
...  

2015 ◽  
Author(s):  
Αιμιλία Ψαρούλη

Recent developments in the fields of bioanalytical chemistry and microelectronics have resulted in a growing trend of transferring the classical analytical methods from the laboratory bench to the field through the development of portable devices or microsystems based on biosensors. Biosensors are self-contained integrated devices capable to provide analytical information using biological recognition molecules in direct spatial contact with a transducer. Biosensors using antibodies or antigens as biological recognition elements are termed as immunosensors and they are based on the same principle as the classical solid-phase immunoassays.The aim of this thesis was to develop and evaluate an optical immunosensor based on Mach-Zehnder Interferometry and integrated on silicon substrate for the immunochemical determination of clinical analytes. The optical sensor developed is fabricated entirely by mainstream silicon technology by the Optical Biosensors group of the Institute of Nanoscience and Nanotechnology of NCSR “Demokritos” and combines arrays of ten sensors in a single silicon chip. Each sensor consists of an integrated on silicon light source that emits a broad spectrum in visible-near ultraviolet range and it is coupled to an integrated silicon nitride waveguide which has been patterned into Mach-Zehnder interferometer. The signal is recorded either through a photodetector monolithically integrated onto the same silicon chip (fully integrated configuration) or through an external spectrometer (semi-integrated configuration). In the fully integrated configuration, the signal recorded is the total photocurrent across the whole spectral range, while in semi-integrated configuration the whole transmission spectrum is continuously recorded and is mathematically transformed (Fourier Transform) to phase shift. As in the classical Mach-Zehnder interferometers, the waveguide in the proposed sensor is split into two arms, the sensing one which is appropriately modified with recognition biomolecule and the reference arm that is covered by a protective layer. The specific binding of the analyte with the immobilized onto the surface recognition biomolecule causes an effective refractive index change at the surface of the sensing arm thus affecting the phase of the waveguided light with respect to the reference arm. Thus, when the two arms converge again, an interference spectrum is generated that is altered during bioreaction providing the ability of monitoring in real-time and without using labels. The main difference of the sensor developed with respect to classical Mach-Zehnder interferometers is that the light source is monolithically integrated on the same silicon substrate with the waveguides and the waveguided light is not monochromatic, but broad spectrum.At first in this study, the method for chemical activation of biofunctionalization of chips was optimized. It was found that the highest signals were obtained when chips where activated by (3-aminopropyl)triethoxysilane and deposition of biomolecules solutions using a microarray spotter. Then, a comparison of the two sensor configurations, i.e. the fully and the semi-integrated configuration was performed using a model binding assay namely the streptavidin-biotin reaction. Semi-integrated configuration provided higher detection sensitivities mainly due to lower between-sensor signal variation in the same chip and between different chips. Thus, this configuration was selected for further evaluation with respect to the determination of analytes of clinical interest and especially of immunochemical determination of C-reactive protein in human serum samples. CRP is a marker of inflammation widely used in everyday clinical practice for diagnosis and therapy monitoring of inflammatory situations. Nevertheless, CRP has been also proposed as a prognostic marker of myocardial infraction and three risk levels have been established; low risk for serum CRP concentrations < 1 μg/mL; medium risk for concentrations in the range 1-3 μg/mL; and high risk for concentrations >3 μg/mL. In the frame of the present thesis, enzyme immunoassays for the determination of CRP in microtitration plates both competitive and non-competitive were developed in order to select the most appropriate reagents and define the immunoassay conditions. Then both assay format were transferred and evaluated on the sensor. It was found that the non-competitive format offered higher responses and ability for regeneration of immobilized onto the sensor antibody against CRP and was therefore selected for the final sensor evaluation. The assay developed following the competitive format was sensitive and accurate as was demonstrated through recovery and dilution linearity experiments, and provided for analysis of samples with a wide range of CRP concentrations since it was immune to the presence of serum. In addition, the CRP values determined with the immunosensor developed in serum samples from unknown donors were in good agreement with those determined for the same samples by commercially available kits and instruments showing the reliability of the determinations performed with the immunosensor developed and its potential for analysis of clinical samples.


2010 ◽  
Vol 93-94 ◽  
pp. 129-132 ◽  
Author(s):  
W. Sripumkhai ◽  
A. Lekwichai ◽  
Win Bunjongpru ◽  
S. Porntheeraphat ◽  
B. Tunhoo ◽  
...  

The on-chip platinum micro-heater prototypes for thermal cycling equipped with platinum temperature sensor are fabricated. The device has been designed, fabricated and characterized to explore the feasibility of the micro-heater for a fully integrated disposable lab-on-a-chip with the PCR module. The on-chip micro-heater demonstrates that the temperature transitions are shorter by comparison with the conventional PCR temperature routines.


Sign in / Sign up

Export Citation Format

Share Document