scholarly journals Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Andrea De Pieri ◽  
Yury Rochev ◽  
Dimitrios I. Zeugolis

AbstractCell-based scaffold-free therapies seek to develop in vitro organotypic three-dimensional (3D) tissue-like surrogates, capitalising upon the inherent capacity of cells to create tissues with efficiency and sophistication that is still unparalleled by human-made devices. Although automation systems have been realised and (some) success stories have been witnessed over the years in clinical and commercial arenas, in vitro organogenesis is far from becoming a standard way of care. This limited technology transfer is largely attributed to scalability-associated costs, considering that the development of a borderline 3D implantable device requires very high number of functional cells and prolonged ex vivo culture periods. Herein, we critically discuss advancements and shortfalls of scaffold-free cell-based tissue engineering strategies, along with pioneering concepts that have the potential to transform regenerative and reparative medicine.

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2006
Author(s):  
Markus Merk ◽  
Orlando Chirikian ◽  
Christian Adlhart

Recent advancements in tissue engineering and material science have radically improved in vitro culturing platforms to more accurately replicate human tissue. However, the transition to clinical relevance has been slow in part due to the lack of biologically compatible/relevant materials. In the present study, we marry the commonly used two-dimensional (2D) technique of electrospinning and a self-assembly process to construct easily reproducible, highly porous, three-dimensional (3D) nanofiber scaffolds for various tissue engineering applications. Specimens from biologically relevant polymers polycaprolactone (PCL) and gelatin were chemically cross-linked using the naturally occurring cross-linker genipin. Potential cytotoxic effects of the scaffolds were analyzed by culturing human dermal fibroblasts (HDF) up to 23 days. The 3D PCL/gelatin/genipin scaffolds produced here resemble the complex nanofibrous architecture found in naturally occurring extracellular matrix (ECM) and exhibit physiologically relevant mechanical properties as well as excellent cell cytocompatibility. Samples cross-linked with 0.5% genipin demonstrated the highest metabolic activity and proliferation rates for HDF. Scanning electron microscopy (SEM) images indicated excellent cell adhesion and the characteristic morphological features of fibroblasts in all tested samples. The three-dimensional (3D) PCL/gelatin/genipin scaffolds produced here show great potential for various 3D tissue-engineering applications such as ex vivo cell culturing platforms, wound healing, or tissue replacement.


Author(s):  
Thomas R. Coughlin ◽  
Matthew Haugh ◽  
Muriel Voisin ◽  
Evelyn Birmingham ◽  
Laoise M. McNamara ◽  
...  

Mesenchymal stem cells (MSCs) are multipotent stromal cells that reside in the bone marrow and differentiate into connective cell lines, such as adipocytes and osteoblasts [1]. An appropriate balance of MSC differentiation toward adipocytes and osteoblasts is vital to bone homeostasis [6]. In vitro work demonstrates that differentiation of MSCs is influenced by mechanical stimuli [2, 3]. In a mouse model, the ratio of adipocytes to MSCs in the marrow was 19% lower compared to controls following treatment by low magnitude mechanical signals (LMMS) [4]. In mice, LMMS increased MSC number by 46% and the differentiation capacity of MSCs was biased towards osteoblastic compared to adipogenic differentiation [5]. Thus, mechanobiological stimuli may play an important role in maintaining balanced MSC differentiation.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5751
Author(s):  
Yuli Zhang ◽  
Hieu M. Pham ◽  
Jose G. Munguia-Lopez ◽  
Joseph M. Kinsella ◽  
Simon D. Tran

Hydrogels have been used for a variety of biomedical applications; in tissue engineering, they are commonly used as scaffolds to cultivate cells in a three-dimensional (3D) environment allowing the formation of organoids or cellular spheroids. Egg white-alginate (EWA) is a novel hydrogel which combines the advantages of both egg white and alginate; the egg white material provides extracellular matrix (ECM)-like proteins that can mimic the ECM microenvironment, while alginate can be tuned mechanically through its ionic crosslinking property to modify the scaffold’s porosity, strength, and stiffness. In this study, a frozen calcium chloride (CaCl2) disk technique to homogenously crosslink alginate and egg white hydrogel is presented for 2.5D culture of human salivary cells. Different EWA formulations were prepared and biologically evaluated as a spheroid-like structure platform. Although all five EWA hydrogels showed biocompatibility, the EWA with 1.5% alginate presented the highest cell viability, while EWA with 3% alginate promoted the formation of larger size salivary spheroid-like structures. Our EWA hydrogel has the potential to be an alternative 3D culture scaffold that can be used for studies on drug-screening, cell migration, or as an in vitro disease model. In addition, EWA can be used as a potential source for cell transplantation (i.e., using this platform as an ex vivo environment for cell expansion). The low cost of producing EWA is an added advantage.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


2021 ◽  
pp. 1-11
Author(s):  
Urvi Panwar ◽  
Kanchan Mishra ◽  
Parizad Patel ◽  
Sumit Bharadva ◽  
Salil Vaniawala ◽  
...  

The quantity of mesenchymal stem/stromal cells (MSCs) required for a particular therapy demands their subsequent expansion through ex vivo culture. During in vitro multiplication, they undergo replicative senescence which may alter their genetic stability. Therefore, this study was aimed to analyze cellular, molecular, and chromosomal alterations in Wharton’s jelly-derived MSCs (WJ-MSCs) during their in vitro sequential passages, where WJ-MSCs were sequentially passaged up to P14 and cells were evaluated at an interval of P2, P6, P10, and P14. They were examined for their morphology, tumorigenicity, surface markers, stemness markers, DNA damage, chromosomal aberration, and telomere length. We have processed five full-term delivered human umbilical cord samples to obtain WJ-MSCs. Morphological appearance observed at initial stages was small fine spindle-shaped WJ-MSCs which were transformed to flat, long, and broader cells in later passages. The cell proliferation rate was gradually decreased after the 10th passage. WJ-MSCs have expressed stemness markers OCT-4 and NANOG, while they showed high expression of positive surface markers CD90 and CD105 and lower expression of CD34 and CD45. They were non-tumorigenic with slow cellular aging during subsequent passages. There was no chromosomal abnormality up to the 14th passage, while increase in comet score and decrease in telomere length were observed in later passages. Hence, our study suggests that early and middle passaged (less than P10) WJ-MSCs are good candidates for clinical administration for treatment.


2021 ◽  
Vol 13 ◽  
pp. 175883592110598
Author(s):  
Inken Flörkemeier ◽  
Tamara N. Steinhauer ◽  
Nina Hedemann ◽  
Magnus Ölander ◽  
Per Artursson ◽  
...  

Background: Ovarian cancer (OvCa) constitutes a rare and highly aggressive malignancy and is one of the most lethal of all gynaecologic neoplasms. Due to chemotherapy resistance and treatment limitations because of side effects, OvCa is still not sufficiently treatable. Hence, new drugs for OvCa therapy such as P8-D6 with promising antitumour properties have a high clinical need. The benzo[ c]phenanthridine P8-D6 is an effective inductor of apoptosis by acting as a dual topoisomerase I/II inhibitor. Methods: In the present study, the effectiveness of P8-D6 on OvCa was investigated in vitro. In various OvCa cell lines and ex vivo primary cells, the apoptosis induction compared with standard therapeutic agents was determined in two-dimensional monolayers. Expanded by three-dimensional and co-culture, the P8-D6 treated cells were examined for changes in cytotoxicity, apoptosis rate and membrane integrity via scanning electron microscopy (SEM). Likewise, the effects of P8-D6 on non-cancer human ovarian surface epithelial cells and primary human hepatocytes were determined. Results: This study shows a significant P8-D6-induced increase in apoptosis and cytotoxicity in OvCa cells which surpasses the efficacy of well-established drugs like cisplatin or the topoisomerase inhibitors etoposide and topotecan. Non-cancer cells were affected only slightly by P8-D6. Moreover, no hepatotoxic effect in in vitro studies was detected. Conclusion: P8-D6 is a strong and rapid inductor of apoptosis and might be a novel treatment option for OvCa therapy.


2018 ◽  
Vol 32 (10) ◽  
pp. 1392-1405 ◽  
Author(s):  
Ali Deniz Dalgic ◽  
Ammar Z. Alshemary ◽  
Ayşen Tezcaner ◽  
Dilek Keskin ◽  
Zafer Evis

In this study, novel graphene oxide–incorporated silicate-doped nano-hydroxyapatite composites were prepared and their potential use for bone tissue engineering was investigated by developing an electrospun poly(ε-caprolactone) scaffold. Nanocomposite groups were synthesized to have two different ratios of graphene oxide (2 and 4 wt%) to evaluate the effect of graphene oxide incorporation and groups with different silicate-doped nano-hydroxyapatite content was prepared to investigate optimum concentrations of both silicate-doped nano-hydroxyapatite and graphene oxide. Three-dimensional poly(ε-caprolactone) scaffolds were prepared by wet electrospinning and reinforced with silicate-doped nano-hydroxyapatite/graphene oxide nanocomposite groups to improve bone regeneration potency. Microstructural and chemical characteristics of the scaffolds were investigated by X-ray diffraction, Fourier transform infrared spectroscope and scanning electron microscopy techniques. Protein adsorption and desorption on material surfaces were studied using fetal bovine serum. Presence of graphene oxide in the scaffold, dramatically increased the protein adsorption with decreased desorption. In vitro biocompatibility studies were conducted using human osteosarcoma cell line (Saos-2). Electrospun scaffold group that was prepared with effective concentrations of silicate-doped nano-hydroxyapatite and graphene oxide particles (poly(ε-caprolactone) – 10% silicate-doped nano-hydroxyapatite – 4% graphene oxide) showed improved adhesion, spreading, proliferation and alkaline phosphatase activity compared to other scaffold groups.


Nanomedicine ◽  
2022 ◽  
Author(s):  
Jihye Baek ◽  
Kwang Il Lee ◽  
Ho Jong Ra ◽  
Martin K Lotz ◽  
Darryl D D'Lima

Aim: To mimic the ultrastructural morphology of the meniscus with nanofiber scaffolds coupled with controlled growth factor delivery to modulate cellular performance for tissue engineering of menisci. Methods: The authors functionalized collagen nanofibers by conjugating heparin to the following growth factors for sustained release: PDGF-BB, TGF-β1 and CTGF. Results: Incorporating growth factors increased human meniscal and synovial cell viability, proliferation and infiltration in vitro, ex vivo and in vivo; upregulated key genes involved in meniscal extracellular matrix synthesis; and enhanced generation of meniscus-like tissue. Conclusion: The authors' results indicate that functionalizing collagen nanofibers can create a cell-favorable micro- and nanoenvironment and can serve as a system for sustained release of bioactive factors.


2018 ◽  
pp. 461-475 ◽  
Author(s):  
Ozan Karaman

The limitation of orthopedic fractures and large bone defects treatments has brought the focus on fabricating bone grafts that could enhance ostegenesis and vascularization in-vitro. Developing biomimetic materials such as mineralized nanofibers that can provide three-dimensional templates of the natural bone extracellular-matrix is one of the most promising alternative for bone regeneration. Understanding the interactions between the structure of the scaffolds and cells and therefore the control cellular pathways are critical for developing functional bone grafts. In order to enhance bone regeneration, the engineered scaffold needs to mimic the characteristics of composite bone ECM. This chapter reviews the fabrication of and fabrication techniques for fabricating biomimetic bone tissue engineering scaffolds. In addition, the chapter covers design criteria for developing the scaffolds and examples of enhanced osteogenic differentiation outcomes by fabricating biomimetic scaffolds.


Sign in / Sign up

Export Citation Format

Share Document