scholarly journals Identification of microRNAs and relative target genes in Moringa oleifera leaf and callus

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Stefano Pirrò ◽  
Ivana Matic ◽  
Arianna Guidi ◽  
Letizia Zanella ◽  
Angelo Gismondi ◽  
...  

Abstract MicroRNAs, a class of small, non-coding RNAs, play important roles in plant growth, development and stress response by negatively regulating gene expression. Moringa oleifera Lam. plant has many medical and nutritional uses; however, little attention has been dedicated to its potential for the bio production of active compounds. In this study, 431 conserved and 392 novel microRNA families were identified and 9 novel small RNA libraries constructed from leaf, and cold stress treated callus, using high-throughput sequencing technology. Based on the M. oleifera genome, the microRNA repertoire of the seed was re-evaluated. qRT-PCR analysis confirmed the expression pattern of 11 conserved microRNAs in all groups. MicroRNA159 was found to be the most abundant conserved microRNA in leaf and callus, while microRNA393 was most abundantly expressed in the seed. The majority of predicted microRNA target genes were transcriptional factors involved in plant reproduction, growth/development and abiotic/biotic stress response. In conclusion, this is the first comprehensive analysis of microRNAs in M. oleifera leaf and callus which represents an important addition to the existing M. oleifera seed microRNA database and allows for possible exploitation of plant microRNAs induced with abiotic stress, as a tool for bio-enrichment with pharmacologically important phytochemicals.

Plant Omics ◽  
2020 ◽  
pp. 57-64
Author(s):  
Shuxia Li ◽  
Zhihao Cheng ◽  
Ming Peng

MicroRNAs (miRNAs) are recognized as essential transcriptional or post-transcriptional regulators, and play versatile roles in plants growth, development and stress responses. Cassava (Manihot esculenta) is a major root crop widely grown worldwide. Cold stress seriously affects cassava plants growth, development and yield. MiRNAs and their targets have been extensively studied in model plants, but a genome-wide identification of miRNAs’ targets is still lacking in cassava. In this study, two degradome libraries were constructed using cold-treated and control cassava seedlings to identify the roles of miRNAs and their targets in response to cold stress. Following high-throughput sequencing and comparing with miRNA database, degradome data allowed us to identify a total of 151 non-redundant miRNA-target pairs. We revealed that ~ 42% of miRNA targets are conserved across plant species. However, 83 novel miRNA targets were identified in the two libraries. Gene ontology analyses showed that many target genes involved in cellular and metabolic process. In addition, 12 miRNAs and 31 corresponding targets of them were further found to be involved in cold stress response. Particularly, miR159, 164 and 396 participated in cold stress response by up-regulating certain transcription factors that were involved in the regulation of downstream gene expression. The work helps identifing cold-responsive miRNA targets in cassava and increases the number of novel targets involved in cold stress response. Furthermore, the findings of this study might provide valuable reference and new insights for understanding the functions of miRNA in stress response in plants.


2021 ◽  
Author(s):  
Wenpeng Zhu ◽  
Manyu Zhang ◽  
Jianyi Li ◽  
Hewen Zhao ◽  
Kezhong Zhang ◽  
...  

Abstract BackgroundAcer rubrum L. is a colorful ornamental tree with great economic value. Because this tree is difficult to root under natural conditions and the seedling survival rate is low, vegetative propagation methods are often used. Because the formation of adventitious roots (ARs) is essential for the survival of asexual propagation of A. rubrum, it is necessary to investigate the molecular regulatory mechanisms in the formation of ARs of A. ruburm. To address this knowledge gap, we sequenced the transcriptome and sRNA of the A. rubrum variety ‘Autumn Fantasy’ using high-throughput sequencing and explored changes in gene and microRNA (miRNA) expression in response to exogenous auxin treatment. ResultsWe identified 82,468 differentially expressed genes between the treated and untreated ARs, as well as 48 known and 95 novel miRNAs. We also identified 172 target genes of the known miRNAs using degradome sequencing. Two regulatory pathways (ubiquitin mediated proteolysis and plant hormone signal transduction), Ar-miR160a and the target gene ArARF10 were shown to be involved in the auxin response. We further investigated the expression patterns and regulatory roles of ArARF10 through subcellular localization, transcriptional activation, plant transformation, qRT-PCR analysis, and GUS staining. ConclusionsDifferential expression patterns indicated the Ar-miR160a-ArARF10 interaction might play a significant role in the regulation of AR formation in A. rubrum. Our study provided new insights into mechanisms underlying the regulation of AR formation in A. rubrum.


Lupus ◽  
2021 ◽  
pp. 096120332110614
Author(s):  
Yan Liang ◽  
Ji Zhang ◽  
Wenxian Qiu ◽  
Bo Chen ◽  
Ying Zhou ◽  
...  

Objective Lupus nephritis (LN) is a major end-organ complication of systemic lupus erythematosus (SLE), and the molecular mechanism of LN is not completely clear. Accumulating pieces of evidence indicate the potential vital role of tRNA-derived small RNAs (tsRNAs) in human diseases. Current study aimed to investigate the potential roles of tsRNAs in LN. Methods We herein employed high‐throughput sequencing to screen the expression profiles of tsRNAs in renal tissues of the LN and control groups. To validate the sequencing data, we performed quantitative real-time PCR (qRT-PCR) analysis. Correlational analysis of verified tsRNAs expression and clinical indicators was conducted using linear regression. The potential target genes were also predicted. The biological functions of tsRNAs were annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Results Our findings revealed that the expression profiles of tsRNAs were significantly altered in the kidney tissues from LN patients compared with control. Overall, 160 tsRNAs were significantly dysregulated in the LN group, of which 79 were upregulated, whereas 81 were downregulated. Subsequent qRT-PCR results confirmed the different expression of candidate tsRNAs. Correlation analysis results found that expression of verified tsRNAs were correlated to clinical indicators. The target prediction results revealed that verified tsRNAs might act on 712 target genes. Further bioinformatics analysis uncovered tsRNAs might participate in the pathogenesis of LN through several associated pathways, including cell adhesion molecules, MAPK signaling pathway, PI3K-Akt signaling pathway and B cell receptor signaling pathway. Conclusion This study provides a novel insight for studying the mechanism of LN.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 661 ◽  
Author(s):  
Xuting Zhang ◽  
Bobo Fan ◽  
Zhuo Yu ◽  
Lizhen Nie ◽  
Yan Zhao ◽  
...  

Agropyron mongolicum Keng, a perennial diploid grass with high drought tolerance, belongs to the genus Agropyron, tribe Triticeae. It has made tremendous contributions toward reseeding natural pasture and seeding artificial grassland in China, especially in the arid and semi-arid area of northern China. As a wild relative of wheat, A. mongolicum is also a valuable resource for the genetic improvement of wheat crops. MicroRNAs are small non-coding RNA molecules ubiquitous in plants, which have been involved in responses to a wide variety of stresses including drought, salinity, chilling temperature. To date, little research has been done on drought-responsive miRNAs in A. mongolicum. In this study, two miRNA libraries of A. mongolicum under drought and normal conditions were constructed, and drought-responsive miRNAs were screened via Solexa high throughput sequencing and bioinformatic analysis. A total of 114 new miRNAs were identified in A. mongolicum including 53 conservative and 61 unconservative miRNAs, and 1393 target genes of 98 miRNAs were predicted. Seventeen miRNAs were found to be differentially expressed under drought stress, seven (amo-miR21, amo-miR62, amo-miR82, amo-miR5, amo-miR77, amo-miR44 and amo-miR17) of which were predicted to target on genes involved in drought tolerance. QRT-PCR analysis confirmed the expression changes of the seven drought related miRNAs in A. mongolicum. We then transformed the seven miRNAs into Arabidopsis thaliana plants, and three of them (amo-miR21, amo-miR5 and amo-miR62) were genetically stable. The three miRNAs demonstrated the same expression pattern in A. thaliana as that in A. mongolicum under drought stress. Findings from this study will better our understanding of the molecular mechanism of miRNAs in drought tolerance and promote molecular breeding of forage grass with improved adaption to drought.


2021 ◽  
Author(s):  
Wenpeng Zhu ◽  
Manyu Zhang ◽  
Jianyi Li ◽  
Hewen Zhao ◽  
Kezhong Zhang ◽  
...  

Abstract BackgroundAcer rubrum L. is a colorful ornamental tree with great economic value. Because this tree is difficult to root under natural conditions and the seedling survival rate is low, vegetative propagation methods are often used. Because the formation of adventitious roots (ARs) is essential for the survival of asexual propagation of A. rubrum, it is necessary to investigate the molecular regulatory mechanisms in the formation of ARs of A. ruburm. To address this knowledge gap, we sequenced the transcriptome and sRNA of the A. rubrum variety ‘Autumn Fantasy’ using high-throughput sequencing and explored changes in gene and microRNA (miRNA) expression in response to exogenous auxin treatment. ResultsWe identified 82,468 differentially expressed genes between the treated and untreated ARs, as well as 48 known and 95 novel miRNAs. We also identified 172 target genes of the known miRNAs using degradome sequencing. Two regulatory pathways (ubiquitin mediated proteolysis and plant hormone signal transduction), Ar-miR160a and the target gene ArARF10 were shown to be involved in the auxin response. We further investigated the expression patterns and regulatory roles of ArARF10 through subcellular localization, transcriptional activation, plant transformation, qRT-PCR analysis, and GUS staining. ConclusionsDifferential expression patterns indicated the Ar-miR160a-ArARF10 interaction might play a significant role in the regulation of AR formation in A. rubrum. Our study provided new insights into mechanisms underlying the regulation of AR formation in A. rubrum.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1374
Author(s):  
Yibing Liu ◽  
Ying Yu ◽  
Hong Ao ◽  
Fengxia Zhang ◽  
Xitong Zhao ◽  
...  

Adipose is an important body tissue in pigs, and fatty traits are critical in pig production. The function of long non-coding RNA (lncRNA) in fat deposition and metabolism has been found in previous studies. In this study, we collected the adipose tissue of six Landrace pigs with contrast backfat thickness (nhigh = 3, nlow = 3), after which we performed strand-specific RNA sequencing (RNA-seq) based on pooling and biological replicate methods. Biological replicate and pooling RNA-seq revealed 1870 and 1618 lncRNAs, respectively. Using edgeR, we determined that 1512 genes and 220 lncRNAs, 2240 genes and 127 lncRNAs were differentially expressed in biological replicate and pooling RNA-seq, respectively. After target gene prediction, we found that ACSL3 was cis-targeted by lncRNA TCONS-00052400 and could activate the conversion of long-chain fatty acids. In addition, lncRNA TCONS_00041740 cis-regulated gene ACACB regulated the rate-limiting enzyme in fatty acid oxidation. Since these genes have necessary functions in fat metabolism, the results imply that the lncRNAs detected in our study may affect backfat deposition in swine through regulation of their target genes. Our study explored the regulation of lncRNA and their target genes in porcine backfat deposition and provided new insights for further investigation of the biological functions of lncRNA.


Genome ◽  
2021 ◽  
Author(s):  
Ying Luo ◽  
Tao Wang ◽  
Dan Yang ◽  
Biao Luo ◽  
Weiping Wang ◽  
...  

Abstract: MicroRNAs (miRNAs) are small, non-coding, regulatory RNAs that play important roles in abiotic stress responses in plants. but their regulatory roles in the adaptive response to heat stress at the booting stage in two rice varieties 9311 and Nagina 22, remain largely unknown. In this study, 464 known miRNAs and 123 potential novel miRNAs were identified. Of these miRNAs, a total of 90 differential expressed miRNAs were obtained with 9311 libraries as control group, of which 54 upregulated and 36 downregulated miRNAs. To gain insight into functional significance, 2773 potential target genes of these 90 differentially expressed miRNAs were predicted. GO enrichment showed that the predicted target genes of differentially expressed miRNAs including NACs, LACs, CSD, and Hsp40. KEGG pathway analysis showed that target genes of these differentially expressed miRNAs were significantly enriched in plant hormone signal transduction pathway. The expression levels of ten differentially expressed miRNAs and their target genes obtained by qRT-PCR were largely consistent with the sequencing results. This study lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in rice at elevated temperatures. Key words: rice, heat-responsive, microRNA, target gene, booting stage, high-throughput sequencing


RSC Advances ◽  
2015 ◽  
Vol 5 (104) ◽  
pp. 85383-85394 ◽  
Author(s):  
Cheng-Yi Tang ◽  
Min-Kai Yang ◽  
Feng-Yao Wu ◽  
Hua Zhao ◽  
Yan-Jun Pang ◽  
...  

MicroRNAs (miRNAs) are a class of noncoding small RNAs (sRNAs) that play many roles in plant growth, development, and the stress response.


2019 ◽  
Author(s):  
Xitong Fei ◽  
Haichao Hu ◽  
Jingmiao Li ◽  
Yulin Liu ◽  
Anzhi Wei

ABSTRACTWhen the plant is in an unfavorable environment such as drought or high temperature, it will accumulate a large amount of active oxygen, which will seriously affect the normal growth and development of the plant. The antioxidant system can remove the reactive oxygen species produced under drought conditions and so mitigate oxidative damage. We examined the trends of antioxidant enzymes, miRNAs and their target genes in Zanthoxylum bungeanum under drought stress. According to the changes of antioxidant enzymes, miRNAs and their target genes expression patterns of Zanthoxylum bungeanum under drought stress, an interaction model was constructed to provide a reference for further understanding of plant antioxidant mechanism. The results indicate that under drought stress, POD, CAT, APX, proline, MDA and related genes all show positive responses to drought, while SOD and its genes showed a negative response. It is speculated that in the antioxidant process of Zanthoxylum bungeanum, POD, CAT, and APX play a major role, and SOD plays a supporting role. In addition, the expression levels of miRANs and their target genes were basically negatively correlated, indicating that miRNAs are involved in the regulation of the antioxidant system of Zanthoxylum bungeanum.


2020 ◽  
Author(s):  
Baizhong Zhang ◽  
Shouping Zhang ◽  
Xu Su ◽  
Lanfen Xie ◽  
Wen-Yang Dong ◽  
...  

Abstract Background: MicroRNAs (miRNAs), which are short single-stranded non-coding RNAs, regulate the expression of target genes, especially those involved in the regulation or metabolism of endogenous or xenobiotic compounds. Results: De novo assemblies of the transcriptome of Sitobion avenae Fabricius under control conditions and under imidacloprid treatment were obtained using Illumina short-read sequencing technology. Fifty-seven miRNAs, of which 36 were known and 21 were novel, were identified. Quantitative analysis of miRNA levels showed that 5 miRNAs were significantly up-regulated, and 11 miRNAs were significantly down-regulated in the nymphs of S. avenae treated with imidacloprid in comparison with those of the control. Analysis of the candidate target genes in S. avenae that could be regulated by these miRNAs were also carried out. The functions of the miRNAs, which could potentially regulate target genes that participate in metabolism, regulatory or detoxification pathways in S. avenae, were clarified based on Gene Ontology and KEGG pathway analysis. The effects of the miRNAs api-miR-1000, api-miR-316, and api-miR-iab-4 on susceptibility of S. avenae to imidacloprid was determined. Modulation of the abundances of api-miR-1000, api-miR-316, and api-miR-iab-4 by the addition of the correspondign inhibitors to the artificial diet significantly changed the susceptibility of S. avenae to imidacloprid, which further demonstrated the effect of these miRNAs on the regulation or metabolism of insecticides.Conclusion: The results of this study suggested that miRNAs differentially expressed in response to imidacloprid could play a critical regulatory role in the resistance of S. avenae to imidacloprid.


Sign in / Sign up

Export Citation Format

Share Document