scholarly journals Small extracellular vesicles convey the stress-induced adaptive responses of melanoma cells

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Maria Harmati ◽  
Edina Gyukity-Sebestyen ◽  
Gabriella Dobra ◽  
Laszlo Janovak ◽  
Imre Dekany ◽  
...  

Abstract Exosomes are small extracellular vesicles (sEVs), playing a crucial role in the intercellular communication in physiological as well as pathological processes. Here, we aimed to study whether the melanoma-derived sEV-mediated communication could adapt to microenvironmental stresses. We compared B16F1 cell-derived sEVs released under normal and stress conditions, including cytostatic, heat and oxidative stress. The miRNome and proteome showed substantial differences across the sEV groups and bioinformatics analysis of the obtained data by the Ingenuity Pathway Analysis also revealed significant functional differences. The in silico predicted functional alterations of sEVs were validated by in vitro assays. For instance, melanoma-derived sEVs elicited by oxidative stress increased Ki-67 expression of mesenchymal stem cells (MSCs); cytostatic stress-resulted sEVs facilitated melanoma cell migration; all sEV groups supported microtissue generation of MSC-B16F1 co-cultures in a 3D tumour matrix model. Based on this study, we concluded that (i) molecular patterns of tumour-derived sEVs, dictated by the microenvironmental conditions, resulted in specific response patterns in the recipient cells; (ii) in silico analyses could be useful tools to predict different stress responses; (iii) alteration of the sEV-mediated communication of tumour cells might be a therapy-induced host response, with a potential influence on treatment efficacy.

Author(s):  
Kiptiyah Kiptiyah ◽  
Widodo Widodo ◽  
Gatot Ciptadi ◽  
Aulanni’am Aulanni’Am ◽  
Mohammad A. Widodo ◽  
...  

AbstractBackgroundWe investigated whether 10-gingerol is able to induce oxidative stress in cumulus cells.MethodsFor the in-vitro research, we used a cumulus cell culture in M199, containing 10-gingerol in various concentrations (0, 12, 16, and 20 µM), and detected oxidative stress through superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentrations, with incubation periods of 24, 48, 72, and 96 h. The obtained results were confirmed by in-silico studies.ResultsThe in-vitro data revealed that SOD activity and MDA concentration increased with increasing incubation periods: SOD activity at 0 µM (1.39 ± 0.24i), 12 µM (16.42 ± 0.35ab), 16 µM (17.28 ± 0.55ab), 20 µM (17.81 ± 0.12a), with a contribution of 71.1%. MDA concentration at 0 µM (17.82 ± 1.39 l), 12 µM (72.99 ± 0.31c), 16 µM (79.77 ± 4.19b), 20 µM (85.07 ± 2.57a), with a contribution of 73.1%. Based on this, the in-silico data uncovered that 10˗gingerol induces oxidative stress in cumulus cells by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.Conclusions10-gingerol induces oxidative stress in cumulus cells through enhancing SOD activity and MDA concentration by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Raghubendra Singh Dagur ◽  
Moses New-Aaron ◽  
Murali Ganesan ◽  
Weimin Wang ◽  
Svetlana Romanova ◽  
...  

Background: Alcohol abuse is common in people living with HIV-1 and dramaticallyenhances the severity of HIV-induced liver damage by inducing oxidative stress and lysosomaldysfunction in the liver cells. We hypothesize that the increased release of extracellular vesicles(EVs) in hepatocytes and liver humanized mouse model is linked to lysosome dysfunction. Methods:The study was performed on primary human hepatocytes and human hepatoma RLWXP-GFP (Huh7.5 cells stably transfected with CYP2E1 and XPack-GFP) cells and validated on ethanol-fed liverhumanizedfumarylacetoacetate hydrolase (Fah)-/-, Rag2-/-, common cytokine receptor gamma chainknockout (FRG-KO) mice. Cells and mice were infected with HIV-1ADA virus. Results: We observedan increase in the secretion of EVs associated with a decrease in lysosomal activity and expressionof lysosomal-associated membrane protein 1. Next-generation RNA sequencing of primary humanhepatocytes revealed 63 differentially expressed genes, with 13 downregulated and 50 upregulatedgenes in the alcohol–HIV-treated group. Upstream regulator analysis of differentially expressedgenes through Ingenuity Pathway Analysis identified transcriptional regulators affecting downstreamgenes associated with increased oxidative stress, lysosomal associated disease, and function andEVs biogenesis. Our in vitro findings were corroborated by in vivo studies on human hepatocytetransplantedhumanized mice, indicating that intensive EVs’ generation by human hepatocytes andtheir secretion to serum was associated with increased oxidative stress and reduction in lysosomalactivities triggered by HIV infection and ethanol diet. Conclusion: HIV-and-ethanol-metabolisminducedEVs release is tightly controlled by lysosome status in hepatocytes and participates in thedevelopment of double-insult-induced liver injury.


2020 ◽  
Vol 327 ◽  
pp. 127045 ◽  
Author(s):  
Ismail Yener ◽  
Safak Ozhan Kocakaya ◽  
Abdulselam Ertas ◽  
Bahadır Erhan ◽  
Erhan Kaplaner ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
A. N. Karunasiri ◽  
C. M. Senanayake ◽  
H. Hapugaswatta ◽  
N. Jayathilaka ◽  
K. N. Seneviratne

Coconut oil meal, a cheap by-product of coconut oil production, is a rich source of phenolic antioxidants. Many age-related diseases are caused by reactive oxygen species- (ROS-) induced damage to macromolecules such as lipids, proteins, and DNA. In the present study, the protective effect of the phenolic extract of coconut oil meal (CMPE) against macromolecular oxidative damage was evaluated using in vitro and in vivo models. Sunflower oil, bovine serum albumin (BSA), and plasmid DNA were used in the in vitro study, and thiobarbituric acid reactive substances (TBARS), protein carbonyl, and nicked DNA were evaluated as oxidation products. The inhibitory effect of CMPE against H2O2-induced macromolecular damage was evaluated using cultured HEp-2 cells. The results indicate that CMPE inhibits macromolecular damage both in vitro and in vivo. In addition, CMPE regulates redox status of HEp-2 cells under oxidative stress conditions by maintaining higher reduced glutathione levels. There was no significant difference in the expression of glutathione peroxidase in stressed and unstressed cells suggesting that CMPE regulates the cellular oxidative stress responses without affecting the expression of oxidative stress response genes. Oral feeding of Wistar rats with CMPE improves the serum and plasma antioxidant status without causing any toxic effects.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Héloïse Proquin ◽  
Marloes C. M. Jonkhout ◽  
Marlon J. Jetten ◽  
Henk van Loveren ◽  
Theo M. de Kok ◽  
...  

AbstractThe food additive titanium dioxide (TiO2), or E171, is a white food colorant. Recent studies showed after E171 ingestion a significantly increased number of colorectal tumours in a colorectal cancer mouse model as well as inflammatory responses and dysregulation of the immune system in the intestine of rats. In the mouse colon, E171 induced gene expression changes related to oxidative stress, impairment of the immune system, activation of signalling and cancer-related processes. E171 comprises nanoparticles (NPs) and microparticles (MPs). Previous in vitro studies showed that E171, NPs and MPs induced oxidative stress responses, DNA damage and micronuclei formation. This study aimed to investigate the relative contribution of the NPs and MPs to effects of E171 at the transcriptome level in undifferentiated Caco-2 cells by genome wide microarray analysis. The results showed that E171, NPs, and MPs induce gene expression changes related to signalling, inflammation, immune system, transport and cancer. At the pathway level, metabolism of proteins with the insulin processing pathway and haemostasis were specific to E171 exposure. The gene expression changes associated with the immune system and inflammation induced by E171, MPs, and NPs suggest the creation of a favourable environment for colon cancer development.


Oncogene ◽  
2020 ◽  
Vol 39 (44) ◽  
pp. 6841-6855 ◽  
Author(s):  
Christina Jessen ◽  
Julia K. C. Kreß ◽  
Apoorva Baluapuri ◽  
Anita Hufnagel ◽  
Werner Schmitz ◽  
...  

AbstractThe transcription factor NRF2 is the major mediator of oxidative stress responses and is closely connected to therapy resistance in tumors harboring activating mutations in the NRF2 pathway. In melanoma, such mutations are rare, and it is unclear to what extent melanomas rely on NRF2. Here we show that NRF2 suppresses the activity of the melanocyte lineage marker MITF in melanoma, thereby reducing the expression of pigmentation markers. Intriguingly, we furthermore identified NRF2 as key regulator of immune-modulating genes, linking oxidative stress with the induction of cyclooxygenase 2 (COX2) in an ATF4-dependent manner. COX2 is critical for the secretion of prostaglandin E2 and was strongly induced by H2O2 or TNFα only in presence of NRF2. Induction of MITF and depletion of COX2 and PGE2 were also observed in NRF2-deleted melanoma cells in vivo. Furthermore, genes corresponding to the innate immune response such as RSAD2 and IFIH1 were strongly elevated in absence of NRF2 and coincided with immune evasion parameters in human melanoma datasets. Even in vitro, NRF2 activation or prostaglandin E2 supplementation blunted the induction of the innate immune response in melanoma cells. Transcriptome analyses from lung adenocarcinomas indicate that the observed link between NRF2 and the innate immune response is not restricted to melanoma.


2020 ◽  
Vol 71 (18) ◽  
pp. 5645-5655 ◽  
Author(s):  
Yujing Bai ◽  
Jingru Guo ◽  
Russel J Reiter ◽  
Yunxie Wei ◽  
Haitao Shi

Abstract Melatonin is an important indole amine hormone in animals and plants. The enzymes that catalyse melatonin synthesis positively regulate plant stress responses through modulation of the accumulation of reactive oxygen species (ROS). However, the relationship between melatonin biosynthetic enzymes and ROS-scavenging enzymes has not been characterized. In this study, we demonstrate that two enzymes of the melatonin synthesis pathway in Manihot esculenta (MeTDC2 and MeASMT2) directly interact with ascorbate peroxidase (MeAPX2) in both in vitro and in vivo experiments. Notably, in the presence of MeTDC2 and MeASMT2, MeAPX2 showed significantly higher activity and antioxidant capacity than the purified MeAPX2 protein alone. These findings indicate that MeTDC2–MeAPX2 and MeASMT2–MeAPX2 interactions both activate APX activity and increase antioxidant capacity. In addition, the combination of MeTDC2, MeASMT2, and MeAPX2 conferred improved resistance to hydrogen peroxide in Escherichia coli. Moreover, this combination also positively regulates oxidative stress tolerance in cassava. Taken together, these findings not only reveal a direct interaction between MeTDC2, MeASMT2, and MeAPX2, but also highlight the importance of this interaction in regulating redox homoeostasis and stress tolerance in cassava.


2005 ◽  
Vol 162 (5) ◽  
pp. 537-547 ◽  
Author(s):  
Bohuš Obert ◽  
Erica E. Benson ◽  
Steve Millam ◽  
Anna Preťová ◽  
David H. Bremner

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3386-3386
Author(s):  
Stefan J. Erkeland ◽  
Marijke Valkhof ◽  
Astrid Danen-van Oorschot ◽  
Ivo P. Touw

Abstract Graffi-1.4 (Gr-1.4) and CasBrM murine leukemia viruses induce myeloid leukemias due to deregulation of genes by proviral integration. Some of these genes, such as peroxiredoxin (PRDX-2), vitamin D upregulated protein 1 (VDUP1), and dual specific phosphatase 10 (DUSP10), are involved in the regulation of reactive oxygen species (ROS) induced stress pathways. ROS are known to influence signal transduction by modulating the activity of protein and lipid phosphatases and cell differentiation at relatively low levels, whereas high ROS levels induce apoptosis. Perturbations of the cellular redox state have a high impact on these processes. VDUP1 is a recently identified oxidative stress-responsive gene that suppresses thioredoxin activity in cardiomyocytes, thereby controlling cell survival. Integrations in the gene encoding VDUP1 all occurred at the 5′ and 3′ region with a frequency of 100% of the Gr-1.4 and 62% of the CasBrM induced leukemias. All cases of CasBrM leukemias with 3′ integrations (33% of leukemias) have additional integrations at the 5′end of VDUP1, suggesting that multiple virus integration sites cooperate in gene deregulation. A hotspot of integrations was found around 900 base pairs upstream of the ATG, near two newly identified heat shock elements. The presence of Gr-1.4 LTR sequences in the VDUP1 promoter and in the 3′ untranslated region results in a 2–2.5 times enhanced luciferase signal when compared to normal promoter activity. This effect was even greater (up to 6-fold) under stress conditions, suggesting that normal VDUP1 regulation is disrupted by viral integration. In human AML, we found that expression of VDUP1 transcripts is different in distinct patient clusters recently identified by gene expression profiling (Valk et al NEJM 2004, 350:1617-28), suggesting a specific involvement of this gene in certain subgroups of AML. For instance, AML samples exhibiting t(8;21) have significantly higher VDUP1 transcript levels compared to other AML patients. Furthermore, high VDUP1 protein levels significantly correlated with FAB classifications M4 and M5 and with younger age (<35 yrs), whereas low VDUP1 expression were found in FAB-M1 and M2 and in patients older than 50 years. To study the consequences of VDUP1 overexpression in normal myelopoiesis, we overexpressed the gene in murine hematopoietic progenitors by retroviral gene transfer and performed in vitro colony assays with G-CSF and liquid culture assay with different cytokine cocktails. Irrespective of the cytokine used, ectopic expression of VDUP1 resulted in accelerated apoptosis and inhibited proliferation, indicating that deregulation of VDUP1 as a single event does not confer a growth advantage and implying that additional events are needed for full leukemic transformation of myeloid precursors. DUSP10 or other members of the DUSP family might be candidates, as we observed that overexpression of DUSP10 in myeloid 32D cells decreased oxidative stress-induced activation of JNK and p38MAPK and inhibited apoptosis. We are currently generating 32D models in which VDUP1 and DUSP10 can be inducibly expressed to further address this hypothesis. In conclusion, we found that VDUP1 expression is frequently enhanced in mouse leukemia models due to viral integrations and also in distinct subgroups of human AML. Our data thus identify disruption of VDUP1-controlled oxidative stress responses as a novel mechanism involved in the pathogenesis of AML.


2010 ◽  
Vol 192 (22) ◽  
pp. 5914-5922 ◽  
Author(s):  
Elizabeth A. Karr

ABSTRACT Methanogens represent some of the most oxygen-sensitive organisms in laboratory culture. Recent studies indicate that they have developed mechanisms to deal with brief oxygen exposure. MsvR is a transcriptional regulator that has a domain architecture unique to a select group of methanogens. Here, runoff in vitro transcription assays were used to demonstrate that MsvR regulates transcription of the divergently transcribed fpaA-rlp-rub operon in Methanothermobacter thermautotrophicus in addition to transcription from its own promoter. The protein products of the fpaA-rlp-rub operon have previously been implicated in oxidative stress responses in M. thermautotrophicus. Additionally, electrophoretic mobility shift assays (EMSAs) and DNase I footprinting were used to confirm a binding site inferred by bioinformatic analysis. Sequence mutations within these binding sites did not significantly alter EMSA shifting patterns on longer templates but did on shorter 50-bp fragments encompassing only the region containing the binding sites. Footprinting confirmed that the regions protected for the longer mutant templates are at different positions within the intergenic region compared to those seen in the intact intergenic region. Oxidized and reduced preparations of MsvR demonstrated different EMSA binding patterns and regions of protection on the intergenic sequence, suggesting that MsvR may play a role in detecting the redox state of the cell.


Sign in / Sign up

Export Citation Format

Share Document