scholarly journals Hepatic Stearoyl-CoA desaturase-1 deficiency-mediated activation of mTORC1- PGC-1α axis regulates ER stress during high-carbohydrate feeding

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmed Aljohani ◽  
Mohammad Imran Khan ◽  
Deeba N. Syed ◽  
Bonneville Abram ◽  
Sarah Lewis ◽  
...  

Abstract Stearoyl CoA desaturase 1 (SCD1) is a key enzyme in lipogenesis as it catalyzes the synthesis of monounsaturated fatty acids (MUFAs), mainly oleate (18:1n9) and palmitoleate (16:1n7) from saturated fatty acids (SFA), stearate (18:0) and palmitate (16:0), respectively. Studies on SCD1 deficiency in mouse models demonstrated beneficial metabolic phenotypes such as reduced adiposity and improved glucose tolerance. Even though, SCD1 represents a potential target to resolve obesity related metabolic diseases; SCD1 deficiency causes endoplasmic reticulum (ER) stress and activates unfolded protein response (UPR). The induction of ER stress in response to SCD1 deficiency is governed by the cofactor, PGC-1α. However, the mechanism by which SCD1 deficiency increases PGC-1α and subsequently induces ER stress still remains elusive. The present study demonstrates that despite reduced lipogenesis, liver specific SCD1 deficiency activates the mechanistic target of rapamycin complex 1 (mTORC1) along with induction of PGC-1α and ER stress. Further, mTORC1 inhibition attenuates SCD1 deficiency-mediated induction of both PGC-1α and ER stress. Similar observations were seen by restoring endogenously synthesized oleate, but not palmitoleate, suggesting a clear mTORC1-mediated regulation of ER stress during SCD1 deficiency. Overall, our results suggest a model whereby maintaining adequate levels of hepatic oleate is required to suppress mTORC1-mediated ER stress. In addition, the activation of mTORC1 by SCD1 deficiency reveals an important function of fatty acids in regulating different cellular processes through mTORC1 signaling.

2020 ◽  
Vol 21 (7) ◽  
pp. 2446
Author(s):  
Lulu Liu ◽  
Yu Wang ◽  
Xiaojuan Liang ◽  
Xiao Wu ◽  
Jiali Liu ◽  
...  

Fat deposition, which influences pork production, meat quality and growth efficiency, is an economically important trait in pigs. Numerous studies have demonstrated that stearoyl-CoA desaturase (SCD), a key enzyme that catalyzes the conversion of saturated fatty acids into monounsaturated fatty acids, is associated with fatty acid composition in pigs. As SCD was observed to be significantly induced in 3T3-L1 preadipocytes differentiation, we hypothesized that it plays a role in porcine adipocyte differentiation and fat deposition. In this study, we revealed that SCD is highly expressed in adipose tissues from seven-day-old piglets, compared to its expression in tissues from four-month-old adult pigs. Moreover, we found that SCD and lipogenesis-related genes were induced significantly in differentiated porcine adipocytes. Using CRISPR/Cas9 technology, we generated SCD-/- porcine embryonic fibroblasts (PEFs) and found that the loss of SCD led to dramatically decreased transdifferentiation efficiency, as evidenced by the decreased expression of known lipid synthesis-related genes, lower levels of oil red O staining and significantly lower levels of triglyceride content. Our study demonstrates the critical role of SCD expression in porcine adipocyte differentiation and paves the way for identifying it as the promising candidate gene for less fat deposition in pigs.


Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 948 ◽  
Author(s):  
Zuzanna Tracz-Gaszewska ◽  
Pawel Dobrzyn

A distinctive feature of cancer cells of various origins involves alterations of the composition of lipids, with significant enrichment in monounsaturated fatty acids. These molecules, in addition to being structural components of newly formed cell membranes of intensely proliferating cancer cells, support tumorigenic signaling. An increase in the expression of stearoyl-CoA desaturase 1 (SCD1), the enzyme that converts saturated fatty acids to ∆9-monounsaturated fatty acids, has been observed in a wide range of cancer cells, and this increase is correlated with cancer aggressiveness and poor outcomes for patients. Studies have demonstrated the involvement of SCD1 in the promotion of cancer cell proliferation, migration, metastasis, and tumor growth. Many studies have reported a role for this lipogenic factor in maintaining the characteristics of cancer stem cells (i.e., the population of cells that contributes to cancer progression and resistance to chemotherapy). Importantly, both the products of SCD1 activity and its direct impact on tumorigenic pathways have been demonstrated. Based on these findings, SCD1 appears to be a significant player in the development of malignant disease and may be a promising target for anticancer therapy. Numerous chemical compounds that exert inhibitory effects on SCD1 have been developed and preclinically tested. The present review summarizes our current knowledge of the ways in which SCD1 contributes to the progression of cancer and discusses opportunities and challenges of using SCD1 inhibitors for the treatment of cancer.


2013 ◽  
Vol 305 (7) ◽  
pp. E767-E775 ◽  
Author(s):  
Alexis D. Stamatikos ◽  
Chad M. Paton

Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids (SFA) into monounsaturated fatty acids and is necessary for proper liver, adipose tissue, and skeletal muscle lipid metabolism. While there is a wealth of information regarding SCD1 expression in the liver, research on its effect in skeletal muscle is scarce. Furthermore, the majority of information about its role is derived from global knockout mice, which are known to be hypermetabolic and fail to accumulate SCD1's substrate, SFA. We now know that SCD1 expression is important in regulating lipid bilayer fluidity, increasing triglyceride formation, and enabling lipogenesis and may protect against SFA-induced lipotoxicity. Exercise has been shown to increase SCD1 expression, which may contribute to an increase in intramyocellular triglyceride at the expense of free fatty acids and diacylglycerol. This review is intended to define the role of SCD1 in skeletal muscle and discuss the potential benefits of its activity in the context of lipid metabolism, insulin sensitivity, exercise training, and obesity.


Author(s):  
Tsunehisa Yamamoto ◽  
Jin Endo ◽  
Masaharu Kataoka ◽  
Yoshinori Katsumata ◽  
Kohsuke Shirakawa ◽  
...  

IntroductionLipotoxicity due to obesity is known to lead to cardiac dysfunction. In an earlier study, we found that an increase in the ratio of saturated fatty acids (SFA) to monounsaturated fatty acids (MUFA) in the membrane of cardiomyocytes causes endoplasmic reticulum (ER) stress. Such stress is hypothesized to be involved in development of SFA-related cardiomyopathy. Another factor affecting the membrane SFA/MUFA ratio is suppression by SFA of SIRT1-mediated stearoyl-CoA desaturase-1 (SCD1), which is involved in converting SFA to MUFA. Therefore, we evaluated whether increasing dietary intake of MUFA can improve the membrane SFA/MUFA ratio.Material and methodsWild-type mice (n = 30) and cardiomyocyte-specific SIRT1 knockout mice (n = 30) were randomly divided into 3 groups and assigned to 16 weeks of a standard mouse diet, 16 weeks of an SFA-rich high-lard diet (HLD), or 8 weeks of a HLD followed by 8 weeks of a MUFA-rich high olive oil diet (HOD switch).ResultsCompared with the control group, the wild-type mice on the HOD diet showed normalized SIRT1-mediated SCD1 signaling, increased membrane SFA/MUFA ratio, decreased ER stress, and improved cardiomyopathy variables. The HLD-fed SIRT1 knockout mice showed greater changes in the SFA/MUFA ratio, ER stress, and cardiomyopathy variables than the wild-type mice. Switching from HLD to HOD ameliorated these phenotypes, although it did not restore the reduced expression of SCD1.ConclusionsThe MUFA-rich diet was found to have a therapeutic effect on SFA-induced cardiomyopathy with diastolic dysfunction by directly rebalancing membrane fatty acid oversaturation and indirectly through the de-inhibition of SIRT1/SCD1 signaling.


2020 ◽  
Author(s):  
Anna B. Petroff ◽  
Rebecca L. Weir ◽  
Charles R. Yates ◽  
Joseph D. Ng ◽  
Jerome Baudry

AbstractStearoyl-CoA desaturase-1 (SCD1 or delta-9 desaturase, D9D) is a key metabolic protein that modulates cellular inflammation and stress, but overactivity of SCD1 is associated with diseases including cancer and metabolic syndrome. This transmembrane endoplasmic reticulum protein converts saturated fatty acids into monounsaturated fatty acids, primarily stearoyl-CoA into oleoyl-CoA, which are critical products for energy metabolism and membrane composition. The present computational molecular dynamics study characterizes the molecular dynamics of SCD1 with substrate, product, and as apoprotein. The modeling of SCD1:fatty acid interactions suggests that 1) SCD1:CoA moiety interactions open the substrate binding tunnel, 2) SCD1 stabilizes a substrate conformation favorable for desaturation, and 3) SCD1:product interactions result in an opening of the tunnel, possibly allowing product exit into the surrounding membrane. Together, these results describe a highly dynamic series of SCD1 conformations resulting from the enzyme:cofactor:substrate interplay that inform drug-discovery efforts.


2008 ◽  
Vol 295 (2) ◽  
pp. E339-E349 ◽  
Author(s):  
Andreas Peter ◽  
Cora Weigert ◽  
Harald Staiger ◽  
Kilian Rittig ◽  
Alexander Cegan ◽  
...  

Endothelial lipotoxicity has been implicated in the pathogenesis of multiple stages of cardiovascular disease from early endothelial dysfunction to manifest atherosclerosis and its complications. Saturated free fatty acids are the major inducers of endothelial cell apoptosis and inflammatory cytokines. In humans, the enzyme human stearoyl-CoA desaturase-1 (hSCD-1) is the limiting step of the desaturation of saturated to monounsaturated fatty acids. Since we could demonstrate the expression of SCD-1 in primary human arterial endothelial cells (HAECs), we aimed to prove a beneficial role of upregulated hSCD-1 expression. In contrast to other cells that are less susceptible to lipotoxicity, hSCD-1 was not upregulated in HAECs upon palmitate treatment. Following that, we could show that upregulation of hSCD-1 using the LXR activator TO-901317 in HAECs protects the cells against palmitate-induced lipotoxicity, cell apoptosis, and expression of inflammatory cytokines IL-6 and IL-8. Increased hSCD-1 activity was determined as increased C16:1/16:0 ratio and enhanced triglyceride storage in palmitate treated cells. The beneficial effect was clearly attributed to enhanced hSCD-1 activity. Overexpression of hSCD-1 blocked palmitate-induced cytotoxicity, and knockdown of hSCD-1 using siRNA abolished the protective effect of TO-901317 in HEK-293 cells. Additionally, inhibition of hSCD-1 with 10/12 CLA blocked the effect of TO-901317 on palmitate-induced lipotoxicity, cell apoptosis, and inflammatory cytokine induction in HAECs. We conclude that upregulation of hSCD-1 leads to a desaturation of saturated fatty acids and facilitates their esterification and storage, thereby preventing downstream effects of lipotoxicity in HAECs. These findings add a novel aspect to the atheroprotective actions of LXR activators in cardiovascular disease.


2010 ◽  
Vol 53 (1) ◽  
pp. 116-118 ◽  
Author(s):  
H. Kulig ◽  
I. Kowalewska-Łuczak ◽  
M. Kmieć

Abstract. Studies concerning associations between candidate gene polymorphisms and milk production traits in cattle are carried out on a large scale (CITEK et al. 2007, KULIG 2005). Stearoyl-CoA desaturase (SCD) is the enzyme involved in conversion of saturated fatty acids into monounsaturated fatty acids. The gene encoding SCD was mapped to bovine chromosome 26 (CAMPBELL et al. 2001), where some QTLs for fat yield and other milk production traits as well as for somatic cells count (SCC) were also identified. Some of the SNPs identified within the SCD were significantly associated with fatty acid composition in milk and in carcass fat tissue (MOIOLI et al. 2007, TANIGUCHI et al. 2004). The effect of genotypes on milk production traits and SCC in cattle has not been reported so far. The aim of this study was therefore to establish possible associations between two SNPs in the SCD and milk production traits and SCC in Jersey cows.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1435
Author(s):  
Anna B. Petroff ◽  
Rebecca L. Weir ◽  
Charles R. Yates ◽  
Joseph D. Ng ◽  
Jerome Baudry

Stearoyl-CoA desaturase-1 (SCD1 or delta-9 desaturase, D9D) is a key metabolic protein that modulates cellular inflammation and stress, but overactivity of SCD1 is associated with diseases, including cancer and metabolic syndrome. This transmembrane endoplasmic reticulum protein converts saturated fatty acids into monounsaturated fatty acids, primarily stearoyl-CoA into oleoyl-CoA, which are critical products for energy metabolism and membrane composition. The present computational molecular dynamics study characterizes the molecular dynamics of SCD1 with substrate, product, and as an apoprotein. The modeling of SCD1:fatty acid interactions suggests that: (1) SCD1:CoA moiety interactions open the substrate-binding tunnel, (2) SCD1 stabilizes a substrate conformation favorable for desaturation, and (3) SCD1:product interactions result in an opening of the tunnel, possibly allowing product exit into the surrounding membrane. Together, these results describe a highly dynamic series of SCD1 conformations resulting from the enzyme:cofactor:substrate interplay that inform drug-discovery efforts.


2020 ◽  
Vol 217 (5) ◽  
Author(s):  
Jeroen F.J. Bogie ◽  
Elien Grajchen ◽  
Elien Wouters ◽  
Aida Garcia Corrales ◽  
Tess Dierckx ◽  
...  

Failure of remyelination underlies the progressive nature of demyelinating diseases such as multiple sclerosis. Macrophages and microglia are crucially involved in the formation and repair of demyelinated lesions. Here we show that myelin uptake temporarily skewed these phagocytes toward a disease-resolving phenotype, while sustained intracellular accumulation of myelin induced a lesion-promoting phenotype. This phenotypic shift was controlled by stearoyl-CoA desaturase-1 (SCD1), an enzyme responsible for the desaturation of saturated fatty acids. Monounsaturated fatty acids generated by SCD1 reduced the surface abundance of the cholesterol efflux transporter ABCA1, which in turn promoted lipid accumulation and induced an inflammatory phagocyte phenotype. Pharmacological inhibition or phagocyte-specific deficiency of Scd1 accelerated remyelination ex vivo and in vivo. These findings identify SCD1 as a novel therapeutic target to promote remyelination.


Sign in / Sign up

Export Citation Format

Share Document