scholarly journals Curcumin to Promote the Synthesis of Silver NPs and their Self-Assembly with a Thermoresponsive Polymer in Core-Shell Nanohybrids

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Albanelly Soto-Quintero ◽  
Nekane Guarrotxena ◽  
Olga García ◽  
Isabel Quijada-Garrido

AbstractThis work presents a simple one-pot protocol to achieve core-doped shell nanohybrids comprising silver nanoparticles, curcumin and thermoresponsive polymeric shell taking advantage of the reducing properties of phenolic curcumin substance and its ability to decorate metallic surfaces. Silver nanoparticles were synthesized, via sodium citrate and silver nitrate addition into a boiling aqueous solution of curcumin, monomers and surfactant. Curcumin and sodium citrate promoted silver nucleation, acting as reducing and stabilizing agents. These curcumin-capped AgNPs enabled, after adding the radical polymerization initiator, the assembling of the growing polymer chains around the hydrophobic AgNP surface. The resultant core-doped shell nanohybrids exhibit plasmonic, luminescent and volume thermoresponsive properties, with improved possibilities to be used as successful therapeutic platforms. In fact, the possibility to nanoconfine the synergistic antioxidant, antiviral, antibacterial features of silver and curcumin in one bioavailable hybrid paves the way to promising applications in the biomedical field.

2011 ◽  
Vol 109 ◽  
pp. 174-177 ◽  
Author(s):  
Yu Li Shi ◽  
Qi Zhou ◽  
Li Yun Lv ◽  
Wang Hong

A facile method for the synthesis of silver nanoparticles (NPs) has been developed by using sodium phosphate (Na3PO4) as stabilizing agents and glucose the reducing agent, respectively. The obtained silver NPs have been characterized by X-ray diffraction (XRD), UV-visible spectroscopy (UV-vis) and transmission electron microscopy (TEM). It was found that in the presence of sodium phosphate, silver NPs with different morphologies and sizes were obtained. The formation mechanism of diverse silver NPs was studied preliminarily.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammad Azam Ansari ◽  
Mohammad A. Alzohairy

Due to the great economic, health, and medicinal importance, Phoenix dactylifera seeds were chosen for the synthesis of silver nanoparticles (AgNPs) because of their ecofriendly, nonhazardous, cost effectiveness advancement over physical and chemical methods, as green methods are safe, one step, and simple and did not require any chemical reducing and stabilizing agents. The green synthesized AgNPs were characterized by UV-Vis spectroscopy, SEM, HR-TEM, and DLS. Further, the bactericidal activity of synthesized AgNPs against Methicillin-resistant Staphylococcus aureus (MRSA) was investigated by determining MIC/MBC, agar diffusion methods, and electron microscopy. TEM images of the so-formed AgNPs revealed that the NPs were spherical in shape, with a size range of 14–30 nm. The MIC and MBC of AgNPs for MRSA were found to be 10.67±0.94 and 17.33±1.89 μg/ml, respectively. The antibacterial activities were found to be increased with the increasing concentration of AgNPs. The zone of inhibition was greater (24mm) at highest concentrations (500μg/ml) of AgNPs, while smaller (11mm) at lowest concentrations (7.8μg/ml). The SEM images of treated MRSA cells showed wrinkled and damaged cell wall, indicating the disruption and disorganization of membrane. HR-TEM analysis exhibits extensive injury and complete disintegration of cell wall and membrane. Large translucent zones have been seen in the cytoplasm, due to either localized or complete separation of the cell membrane from the cell wall. Overall, these results indicate that green synthesized AgNPs should be considered as an effective treatment and prevention option for the medical devises related infections caused by deadly MRSA and other drug resistant pathogens.


Author(s):  
Predrag Petrović ◽  
Danijela Kostić ◽  
Anita Klaus ◽  
Jovana Vunduk ◽  
Miomir Nikšić ◽  
...  

Silver nanoparticles (AgNPs) were synthesized by “green”, cheap hydrothermal method in an autoclave using sodium citrate and Vascellum pratense polysaccharide extract as reducing and stabilizing agents. Presence of spherical AgNPs was confirmed by UV-VIS spectrophotometry and scanning electron microscopy; particle size was determined as ~ 40 nm. Even though colloidal solution had relatively low absolute value of zeta potential(-15 mV), short term stability studies suggested a stable system, with AgNPs being stabilized by both citrate and fungal polysaccharides, as FTIR spectra confirmed. The colloidal solution showed good antimicrobial activity against both G+/G- bacteria and Candida albicans, including methicilin resistant Staphylococcus aureus (MRSA). Products containing AgNPs and fungal polysaccharides, which possess various biological activities - most important being immunostimulation - may find use in treatment of skin conditions caused by pathogens.


2021 ◽  
Vol 59 (2) ◽  
pp. 214
Author(s):  
Dung Ngo Thanh ◽  
Nguyet Ha Minh ◽  
Tam Le Thi Thanh ◽  
Lu Le Trong

In this study, silver nanoparticles were synthesized from aqueous silver nitrate through a simple and eco-friendly route using a combination of two reducing agents: sodium citrate and tannic acid. By this method, the obtained Ag nanoparticles (NPs) were stable within the studied period of six months. Besides, both TEM images and UV-Vis results showed that the size of silver NPs could be controlled by changing the concentration of tannic acid. The antibacterial ability of Ag NPs with different sizes were also examined. In detail, the smaller the Ag NPs were, the more efficient their antibacterial activity was.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1352
Author(s):  
Samir Haj Bloukh ◽  
Zehra Edis ◽  
Hamid Abu Sara ◽  
Mustafa Ameen Alhamaidah

Antibiotic resistance toward commonly used medicinal drugs is a dangerously growing threat to our existence. Plants are naturally equipped with a spectrum of biomolecules and metabolites with important biological activities. These natural compounds constitute a treasure in the fight against multidrug-resistant microorganisms. The development of plant-based antimicrobials through green synthesis may deliver alternatives to common drugs. Lepidium sativum L. (LS) is widely available throughout the world as a fast-growing herb known as garden cress. LS seed oil is interesting due to its antimicrobial, antioxidant, and anti-inflammatory activities. Nanotechnology offers a plethora of applications in the health sector. Silver nanoparticles (AgNP) are used due to their antimicrobial properties. We combined LS and AgNP to prevent microbial resistance through plant-based synergistic mechanisms within the nanomaterial. AgNP were prepared by a facile one-pot synthesis through plant-biomolecules-induced reduction of silver nitrate via a green method. The phytochemicals in the aqueous LS extract act as reducing, capping, and stabilizing agents of AgNP. The composition of the LS-AgNP biohybrids was confirmed by analytical methods. Antimicrobial testing against 10 reference strains of pathogens exhibited excellent to intermediate antimicrobial activity. The bio-nanohybrid LS-AgNP has potential uses as a broad-spectrum microbicide, disinfectant, and wound care product.


2019 ◽  
Author(s):  
Liman Hou ◽  
Marta Dueñas-Diez ◽  
Rohit Srivastava ◽  
Juan Perez-Mercader

<p></p><p>Belousov-Zhabotinsky (B-Z) reaction driven polymerization-induced self-assembly (PISA), or B-Z PISA, is a novel method for the autonomous one-pot synthesis of polymer vesicles from a macroCTA (macro chain transfer agent) and monomer solution (“soup”) containing the above and the BZ reaction components. In it, the polymerization is driven (and controlled) by periodically generated radicals generated in the oscillations of the B-Z reaction. These are inhibitor/activator radicals for the polymerization. Until now B-Z PISA has only been carried out in batch reactors. In this manuscript we present the results of running the system using a continuously stirred tank reactor (CSTR) configuration which offers some interesting advantages.Indeed, by controlling the CSTR parameters we achieve reproducible and simultaneous control of the PISA process and of the properties of the oscillatory cargo encapsulated in the resulting vesicles. Furthermore, the use of flow chemistry enables a more precise morphology control and chemical cargo tuning. Finally, in the context of biomimetic applications a CSTR operation mimics more closely the open non-equilibrium conditions of living systems and their surrounding environments.</p><p></p>


2020 ◽  
Vol 21 (11) ◽  
pp. 1129-1137 ◽  
Author(s):  
Somayeh Mirsadeghi ◽  
Masoumeh F. Koudehi ◽  
Hamid R. Rajabi ◽  
Seied M. Pourmortazavi

Background: Herein, we report the biosynthesis procedure to prepare silver nanoparticles as reduction and capping agents with the aqueous plant extract of Perovskia abrotanoides. Methods: The therapeutic application of silver nanoparticles entirely depends on the size and shape of the nanoparticles therefore, their control during the synthesis procedure is so important. The effects of synthesis factors, for example, silver ion concentration, the mass of plant extract, reaction time and extraction temperature, on the size of silver particles were considered and optimized. Several analytical methods were used for the characterization of silver NPs including FT-IR and UV–Vis spectrophotometer, XRD and SEM. Results: The results showed that the mean size of the silver particles was about 51 nm. Moreover, the antibacterial properties of biosynthesized silver NPs were investigated by the minimum inhibitory concentration, minimum bactericidal concentration, and Well-diffusion tests. The minimum inhibitory concentration/ minimum bactericidal concentration values of silver NPs and aqueous plant extract versus Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (E. coli) were 3.03/0.00, 1.20/0.01, 3.06/0.00, 0.98/1.04, 1.00/0.05 and 1.30/0.03 (mg/mL), respectively. Conclusion: The antimicrobial activity study displayed that the synthesized silver nanoparticles by plant extract have better antimicrobial properties compared to aqueous plant extract of Perovskia abrotanoides.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1288
Author(s):  
Thi Thuy Nguyen ◽  
Fayna Mammeri ◽  
Souad Ammar ◽  
Thi Bich Ngoc Nguyen ◽  
Trong Nghia Nguyen ◽  
...  

The formation of silver nanopetal-Fe3O4 poly-nanocrystals assemblies and the use of the resulting hetero-nanostructures as active substrates for Surface Enhanced Raman Spectroscopy (SERS) application are here reported. In practice, about 180 nm sized polyol-made Fe3O4 spheres, constituted by 10 nm sized crystals, were functionalized by (3-aminopropyl)triethoxysilane (APTES) to become positively charged, which can then electrostatically interact with negatively charged silver seeds. Silver petals were formed by seed-mediated growth in presence of Ag+ cations and self-assembly, using L-ascorbic acid (L-AA) and polyvinyl pyrrolidone (PVP) as mid-reducing and stabilizing agents, respectively. The resulting plasmonic structure provides a rough surface with plenty of hot spots able to locally enhance significantly any applied electrical field. Additionally, they exhibited a high enough saturation magnetization with Ms = 9.7 emu g−1 to be reversibly collected by an external magnetic field, which shortened the detection time. The plasmonic property makes the engineered Fe3O4-Ag architectures particularly valuable for magnetically assisted ultra-sensitive SERS sensing. This was unambiguously established through the successful detection, in water, of traces, (down to 10−10 M) of Rhodamine 6G (R6G), at room temperature.


RSC Advances ◽  
2021 ◽  
Vol 11 (24) ◽  
pp. 14624-14631
Author(s):  
Pablo Eduardo Cardoso-Avila ◽  
Rita Patakfalvi ◽  
Carlos Rodríguez-Pedroza ◽  
Xochitl Aparicio-Fernández ◽  
Sofía Loza-Cornejo ◽  
...  

Gold and silver nanoparticles were synthesized at room temperature using an aqueous extract from dried rosehips acting as reducing and capping agents with no other chemicals involved.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Somayeh Safat ◽  
Foad Buazar ◽  
Salim Albukhaty ◽  
Soheila Matroodi

AbstractThis contribution presents the biosynthesis, physiochemical properties, toxicity and photocatalytic activity of biogenic CeO2 NPs using, for the first time, marine oyster extract as an effective and rich source of bioreducing and capping/stabilizing agents in a one-pot recipe. CeO2 NPs formation was initially confirmed through the color change from light green to pale yellow and subsequently, their corresponding absorption peak was spectroscopically determined at 310 nm with an optical band-gap of 4.67 eV using the DR-UV technique. Further, XRD and Raman analyses indicated that nanoceria possessed face-centered cubic arrangements without any impurities, having an average crystallite size of 10 nm. TEM and SEM results revealed that biogenic CeO2 NPs was approximately spherical in shape with a median particle size of 15 ± 1 nm. The presence of various bioorganic substances on the surface of nanoparticles was deduced by FTIR and TGA results. It is found that marine-based nanoceria shows no cytotoxic effect on the normal cell, thus indicating their enhanced biocompatibility and biosafety to living organisms. Environmentally, due to energy band gap, visible light-activated CeO2 nanocatalyst revealed superior photocatalytic performance on degradation of methylene blue pollutant with removal rate of 99%. Owing to the simplicity, cost-effectiveness, and environmentally friendly nature, this novel marine biosynthetic route paves the way for prospective applications of nanoparticles in various areas.


Sign in / Sign up

Export Citation Format

Share Document