scholarly journals Characterization of the pathogenesis and immune response to Listeria monocytogenes strains isolated from a sustained national outbreak

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pallab Ghosh ◽  
Yan Zhou ◽  
Quentin Richardson ◽  
Darren E. Higgins

AbstractListeria monocytogenes is an intracellular pathogen responsible for listeriosis, a foodborne disease that can lead to life-threatening meningitis. The 2011 L. monocytogenes cantaloupe outbreak was among the deadliest foodborne outbreaks in the United States. We conducted in vitro and in vivo infection analyses to determine whether strains LS741 and LS743, two clinical isolates from the cantaloupe outbreak, differ significantly from the common laboratory strain 10403S. We showed that LS741 and LS743 exhibited increased virulence, characterized by higher colonization of the brain and other organs in mice. Assessment of cellular immune responses to known CD8+ T cell antigens was comparable between all strains. However, pre-existing immunity to 10403S did not confer protection in the brain against challenge with LS741. These studies provide insights into the pathogenesis of clinical isolates linked to the 2011 cantaloupe outbreak and also indicate that currently utilized laboratory strains are imperfect models for studying L. monocytogenes pathogenesis.

2015 ◽  
Vol 59 (11) ◽  
pp. 6939-6945 ◽  
Author(s):  
Imaan Benmerzouga ◽  
Lisa A. Checkley ◽  
Michael T. Ferdig ◽  
Gustavo Arrizabalaga ◽  
Ronald C. Wek ◽  
...  

ABSTRACTToxoplasma gondiiis a protozoan parasite that persists as a chronic infection.Toxoplasmaevades immunity by forming tissue cysts, which reactivate to cause life-threatening disease during immune suppression. There is an urgent need to identify drugs capable of targeting these latent tissue cysts, which tend to form in the brain. We previously showed that translational control is critical during infections with both replicative and latent forms ofToxoplasma. Here we report that guanabenz, an FDA-approved drug that interferes with translational control, has antiparasitic activity against replicative stages ofToxoplasmaand the related apicomplexan parasitePlasmodium falciparum(a malaria agent). We also found that inhibition of translational control interfered with tissue cyst biologyin vitro.Toxoplasmabradyzoites present in these abnormal cysts were diminished and misconfigured, surrounded by empty space not seen in normal cysts. These findings prompted analysis of the efficacy of guanabenzin vivoby using established mouse models of acute and chronic toxoplasmosis. In addition to protecting mice from lethal doses ofToxoplasma, guanabenz has a remarkable ability to reduce the number of brain cysts in chronically infected mice. Our findings suggest that guanabenz can be repurposed into an effective antiparasitic with a unique ability to reduce tissue cysts in the brain.


2015 ◽  
Vol 83 (6) ◽  
pp. 2409-2419 ◽  
Author(s):  
Diana Henke ◽  
Sebastian Rupp ◽  
Véronique Gaschen ◽  
Michael H. Stoffel ◽  
Joachim Frey ◽  
...  

Listeria monocytogenesrhombencephalitis is a severe progressive disease despite a swift intrathecal immune response. Based on previous observations, we hypothesized that the disease progresses by intra-axonal spread within the central nervous system. To test this hypothesis, neuroanatomical mapping of lesions, immunofluorescence analysis, and electron microscopy were performed on brains of ruminants with naturally occurring rhombencephalitis. In addition, infection assays were performed in bovine brain cell cultures. Mapping of lesions revealed a consistent pattern with a preferential affection of certain nuclear areas and white matter tracts, indicating thatListeria monocytogenesspreads intra-axonally within the brain along interneuronal connections. These results were supported by immunofluorescence and ultrastructural data localizingListeria monocytogenesinside axons and dendrites associated with networks of fibrillary structures consistent with actin tails.In vitroinfection assays confirmed that bacteria were moving within axon-like processes by employing their actin tail machinery. Remarkably,in vivo, neutrophils invaded the axonal space and the axon itself, apparently by moving between split myelin lamellae of intact myelin sheaths. This intra-axonal invasion of neutrophils was associated with various stages of axonal degeneration and bacterial phagocytosis. Paradoxically, the ensuing adaxonal microabscesses appeared to provide new bacterial replication sites, thus supporting further bacterial spread. In conclusion, intra-axonal bacterial migration and possibly also the innate immune response play an important role in the intracerebral spread of the agent and hence the progression of listeric rhombencephalitis.


2001 ◽  
Vol 45 (12) ◽  
pp. 3555-3559 ◽  
Author(s):  
K. C. Carter ◽  
A. B. Mullen ◽  
S. Sundar ◽  
R. T. Kenney

ABSTRACT In this study, the in vitro and in vivo efficacies of free sodium stibogluconate (SSG) and a nonionic surfactant vesicular formulation of SSG (SSG-NIV) against a laboratory strain ofLeishmania donovani (MHOM/ET/67:LV82) and different clinical isolates of L. donovani were determined. Treatment with SSG-NIV was more effective against intramacrophage amastigotes than treatment with SSG. In vivo murine studies showed that there was interstrain variability in the infectivity of the different L. donovani strains, with two of the strains (20001 and 20003) giving low parasite burdens. In addition, interstrain variability in the antileishmanial efficacy of SSG in a single dose containing 300 mg of Sb(V)/kg of body weight was observed. This dose of free drug either caused a >97% reduction in liver parasite burdens or had no significant effect on parasite burdens compared with the result with the respective control. In some instances, treatment with this free SSG dose also caused a significant reduction in spleen (strain 20006) or bone marrow (strains 20001 and 20009) parasite burdens. Treatment with SSG-NIV was more effective than that with SSG against all of the strains tested. In SSG-responsive strains, the reduction in liver parasite burdens by SSG-NIV treatment was similar to that caused by free SSG. In SSG-nonresponsive strains, SSG-NIV treatment caused at least a 95% reduction in liver parasite burdens. Overall, these results indicate that the use of a vesicular formulation of SSG is likely to increase its clinical efficacy against visceral leishmaniasis.


Author(s):  
Beverly E. Maleeff ◽  
Timothy K. Hart ◽  
Stephen J. Wood ◽  
Ronald Wetzel

Alzheimer's disease is characterized post-mortem in part by abnormal extracellular neuritic plaques found in brain tissue. There appears to be a correlation between the severity of Alzheimer's dementia in vivo and the number of plaques found in particular areas of the brain. These plaques are known to be the deposition sites of fibrils of the protein β-amyloid. It is thought that if the assembly of these plaques could be inhibited, the severity of the disease would be decreased. The peptide fragment Aβ, a precursor of the p-amyloid protein, has a 40 amino acid sequence, and has been shown to be toxic to neuronal cells in culture after an aging process of several days. This toxicity corresponds to the kinetics of in vitro amyloid fibril formation. In this study, we report the biochemical and ultrastructural effects of pH and the inhibitory agent hexadecyl-N-methylpiperidinium (HMP) bromide, one of a class of ionic micellar detergents known to be capable of solubilizing hydrophobic peptides, on the in vitro assembly of the peptide fragment Aβ.


2018 ◽  
Vol 24 (9) ◽  
pp. 989-992 ◽  
Author(s):  
Samir Gorasiya ◽  
Juliet Mushi ◽  
Ryan Pekson ◽  
Sabesan Yoganathan ◽  
Sandra E. Reznik

Background: Preterm birth (PTB), or birth that occurs before 37 weeks of gestation, accounts for the majority of perinatal morbidity and mortality. As of 2016, PTB has an occurrence rate of 9.6% in the United States and accounts for up to 18 percent of births worldwide. Inflammation has been identified as the most common cause of PTB, but effective pharmacotherapy has yet to be developed to prevent inflammation driven PTB. Our group has discovered that N,N-dimethylacetamide (DMA), a readily available solvent commonly used as a pharmaceutical excipient, rescues lipopolysaccharide (LPS)-induced timed pregnant mice from PTB. Methods: We have used in vivo, ex vivo and in vitro approaches to investigate this compound further. Results: Interestingly, we found that DMA suppresses cytokine secretion by inhibiting nuclear factor-kappa B (NF-κB). In ongoing work in this exciting line of investigation, we are currently investigating structural analogs of DMA, some of them novel, to optimize this approach focused on the inflammation associated with PTB. Conclusion: Successful development of pharmacotherapy for the prevention of PTB rests upon the pursuit of multiple strategies to solve this important clinical challenge.


2020 ◽  
Vol 17 (3) ◽  
pp. 229-245
Author(s):  
Gang Wang ◽  
Junjie Wang ◽  
Rui Guan

Background: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment. Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor. Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs). Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells. Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


Author(s):  
Thu Hang Lai ◽  
Magali Toussaint ◽  
Rodrigo Teodoro ◽  
Sladjana Dukić-Stefanović ◽  
Daniel Gündel ◽  
...  

Abstract Purpose The adenosine A2A receptor has emerged as a therapeutic target for multiple diseases, and thus the non-invasive imaging of the expression or occupancy of the A2A receptor has potential to contribute to diagnosis and drug development. We aimed at the development of a metabolically stable A2A receptor radiotracer and report herein the preclinical evaluation of [18F]FLUDA, a deuterated isotopologue of [18F]FESCH. Methods [18F]FLUDA was synthesized by a two-step one-pot approach and evaluated in vitro by autoradiographic studies as well as in vivo by metabolism and dynamic PET/MRI studies in mice and piglets under baseline and blocking conditions. A single-dose toxicity study was performed in rats. Results [18F]FLUDA was obtained with a radiochemical yield of 19% and molar activities of 72–180 GBq/μmol. Autoradiography proved A2A receptor–specific accumulation of [18F]FLUDA in the striatum of a mouse and pig brain. In vivo evaluation in mice revealed improved stability of [18F]FLUDA compared to that of [18F]FESCH, resulting in the absence of brain-penetrant radiometabolites. Furthermore, the radiometabolites detected in piglets are expected to have a low tendency for brain penetration. PET/MRI studies confirmed high specific binding of [18F]FLUDA towards striatal A2A receptor with a maximum specific-to-non-specific binding ratio in mice of 8.3. The toxicity study revealed no adverse effects of FLUDA up to 30 μg/kg, ~ 4000-fold the dose applied in human PET studies using [18F]FLUDA. Conclusions The new radiotracer [18F]FLUDA is suitable to detect the availability of the A2A receptor in the brain with high target specificity. It is regarded ready for human application.


Sign in / Sign up

Export Citation Format

Share Document