scholarly journals Modular affinity-labeling of the cytosine demethylation base elements in DNA

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fanny Wang ◽  
Osama K. Zahid ◽  
Uday Ghanty ◽  
Rahul M. Kohli ◽  
Adam R. Hall

Abstract5-methylcytosine is the most studied DNA epigenetic modification, having been linked to diverse biological processes and disease states. The elucidation of cytosine demethylation has drawn added attention the three additional intermediate modifications involved in that pathway—5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine—each of which may have distinct biological roles. Here, we extend a modular method for labeling base modifications in DNA to recognize all four bases involved in demethylation. We demonstrate both differential insertion of a single affinity tag (biotin) at the precise position of target elements and subsequent repair of the nicked phosphate backbone that remains following the procedure. The approach enables affinity isolation and downstream analyses without inducing widespread damage to the DNA.

Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 80
Author(s):  
Joohwan Kim ◽  
Gina Lee

Nutrients and metabolic pathways regulate cell growth and cell fate decisions via epigenetic modification of DNA and histones. Another key genetic material, RNA, also contains diverse chemical modifications. Among these, N6-methyladenosine (m6A) is the most prevalent and evolutionarily conserved RNA modification. It functions in various aspects of developmental and disease states, by controlling RNA metabolism, such as stability and translation. Similar to other epigenetic processes, m6A modification is regulated by specific enzymes, including writers (methyltransferases), erasers (demethylases), and readers (m6A-binding proteins). As this is a reversible enzymatic process, metabolites can directly influence the flux of this reaction by serving as substrates and/or allosteric regulators. In this review, we will discuss recent understanding of the regulation of m6A RNA modification by metabolites, nutrients, and cellular metabolic pathways.


2014 ◽  
Vol 67 (8) ◽  
pp. 656-660 ◽  
Author(s):  
Sumit Sahni ◽  
Angelica M Merlot ◽  
Sukriti Krishan ◽  
Patric J Jansson ◽  
Des R Richardson

The BECN1 gene encodes the Beclin-1 protein, which is a well-established regulator of the autophagic pathway. It is a mammalian orthologue of the ATG6 gene in yeast and was one of the first identified mammalian autophagy-associated genes. Beclin-1 interacts with a number of binding partners in the cell which can lead to either activation (eg, via PI3KC3/Vps34, Ambra 1, UV radiation resistance-associated gene) or inhibition (eg, via Bcl-2, Rubicon) of the autophagic pathway. Apart from its role as a regulator of autophagy, it is also shown to effect important biological processes in the cell such as apoptosis and embryogenesis. Beclin-1 has also been implicated to play a critical role in the pathology of a variety of disease states including cancer, neurological disorders (eg, Alzheimer's disease, Parkinson's disease) and viral infections. Thus, understanding the functions of Beclin-1 and its interactions with other cellular components will aid in its development as an important therapeutic target for future drug development.


Author(s):  
Yating Xu ◽  
Menggang Zhang ◽  
Qiyao Zhang ◽  
Xiao Yu ◽  
Zongzong Sun ◽  
...  

RNA methylation is considered a significant epigenetic modification, a process that does not alter gene sequence but may play a necessary role in multiple biological processes, such as gene expression, genome editing, and cellular differentiation. With advances in RNA detection, various forms of RNA methylation can be found, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 5-methylcytosine (m5C). Emerging reports confirm that dysregulation of RNA methylation gives rise to a variety of human diseases, particularly hepatocellular carcinoma. We will summarize essential regulators of RNA methylation and biological functions of these modifications in coding and noncoding RNAs. In conclusion, we highlight complex molecular mechanisms of m6A, m5C, and m1A associated with hepatocellular carcinoma and hope this review might provide therapeutic potent of RNA methylation to clinical research.


2018 ◽  
Vol 50 (9) ◽  
pp. 714-723 ◽  
Author(s):  
Xiaolong Zhou ◽  
Songbai Yang ◽  
Feifei Yan ◽  
Ke He ◽  
Ayong Zhao

DNA methylation is an important epigenetic modification involved in the estrous cycle and the regulation of reproduction. Here, we investigated the genome-wide profiles of DNA methylation in porcine ovaries in proestrus and estrus using methylated DNA immunoprecipitation sequencing. The results showed that DNA methylation was enriched in intergenic and intron regions. The methylation levels of coding regions were higher than those of the 5′- and 3′-flanking regions of genes. There were 4,813 differentially methylated regions (DMRs) of CpG islands in the estrus vs. proestrus ovarian genomes. Additionally, 3,651 differentially methylated genes (DMGs) were identified in pigs in estrus and proestrus. The DMGs were significantly enriched in biological processes and pathways related to reproduction and hormone regulation. We identified 90 DMGs associated with regulating reproduction in pigs. Our findings can serve as resources for DNA methylome research focused on porcine ovaries and further our understanding of epigenetically regulated reproduction in mammals.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Fanglei Zhuang ◽  
Ryan T. Fuchs ◽  
G. Brett Robb

Eukaryotic regulatory small RNAs (sRNAs) play significant roles in many fundamental cellular processes. As such, they have emerged as useful biomarkers for diseases and cell differentiation states. sRNA-based biomarkers outperform traditional messenger RNA-based biomarkers by testing fewer targets with greater accuracy and providing earlier detection for disease states. Therefore, expression profiling of sRNAs is fundamentally important to further advance the understanding of biological processes, as well as diagnosis and treatment of diseases. High-throughput sequencing (HTS) is a powerful approach for both sRNA discovery and expression profiling. Here, we discuss the general considerations for sRNA-based HTS profiling methods from RNA preparation to sequencing library construction, with a focus on the causes of systematic error. By examining the enzymatic manipulation steps of sRNA expression profiling, this paper aims to demystify current HTS-based sRNA profiling approaches and to aid researchers in the informed design and interpretation of profiling experiments.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Robert Foronjy

Abstract Asthma is a common, allergic respiratory disorder affecting over 350 million people worldwide. One of the key features of asthma is skewing of CD4+ cells toward Th2 responses. This promotes the production of cytokines like IL-4 that induce IgE production resulting in the hypersecretion of mucus and airway smooth muscle contraction. Understanding the factors that favor Th2 expansion in asthma would provide important insights into the underlying pathogenesis of this disorder. Asthma research has focused on signaling pathways that control the transcription of key asthma-related genes. However, increasing evidence shows that post-transcriptional factors also determine CD4+ cell fate and the enhancement of allergic airway responses. A recent paper published by Liang et al. (Bioscience Reports (2020) 40, https://doi.org/10.1042/BSR20190397) highlights a novel role for the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in Th2 development in asthma. MALAT1 modulates several biological processes including alternative splicing, epigenetic modification and gene expression. It is one of the most highly expressed lncRNAs in normal tissues and MALAT1 levels correlate with poor clinical outcomes in cancer. The mechanisms of action of MALAT1 in tumor progression and metastasis remain unclear and even less is known about its effects in inflammatory disease states like asthma. The work of Liang et al. demonstrates heightened MALAT1 expression in asthma and further shows that this lncRNA targets miR-155 to promote Th2 differentiation in this disease. This insight sets the stage for future studies to examine how MALAT1 manipulation could deter allergic immune responses in asthmatic airways.


2017 ◽  
Vol 71 (1) ◽  
pp. 0-0
Author(s):  
Ewelina Wiśnik ◽  
Ewa Pikus ◽  
Piotr Duchnowicz ◽  
Maria Koter-Michalak

Monocytes belong to myeloid effector cells, which constitute the first line of defense against pathogens, also called the nonspecific immune system and play an important role in the maintenance of tissue homeostasis. In response to stimulation, monocytes differentiate into macrophages capable of microorganism phagocytosis and secrete factors that play a key role in the regulation of immune responses. However excessive exposure of monocytes/macrophages to the lipopolysaccharide (LPS) of Gram negative bacteria leads to the acquisition of immune tolerance by these cells. Such state results from disruption of different biological processes, for example intracellular signaling pathways and is accompanied by a number of disease states (immune, inflammatory or neoplastic conditions). Regulation of monocytes/macrophages activity is controlled by miRNAs, which are involved in the modulation of immune tolerance acquired by these cells. Moreover, the tolerance to endotoxin is conditioned by the posttranscriptional processes and posttranslational epigenetic modifications leading to the impairment of normal immune response for example by alterations in the expression of many genes encoding immune signaling mediators. The aim of this paper is to provide an overview existing knowledge on the modulation of activity of monocytes/macrophages in response to bacterial endotoxin and impaired immune responses.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Rhoanne C McPherson ◽  
Joanne E Konkel ◽  
Catriona T Prendergast ◽  
John P Thomson ◽  
Raffaele Ottaviano ◽  
...  

Clinically effective antigen-based immunotherapy must silence antigen-experienced effector T cells (Teff) driving ongoing immune pathology. Using CD4+ autoimmune Teff cells, we demonstrate that peptide immunotherapy (PIT) is strictly dependent upon sustained T cell expression of the co-inhibitory molecule PD-1. We found high levels of 5-hydroxymethylcytosine (5hmC) at the PD-1 (Pdcd1) promoter of non-tolerant T cells. 5hmC was lost in response to PIT, with DNA hypomethylation of the promoter. We identified dynamic changes in expression of the genes encoding the Ten-Eleven-Translocation (TET) proteins that are associated with the oxidative conversion 5-methylcytosine and 5hmC, during cytosine demethylation. We describe a model whereby promoter demethylation requires the co-incident expression of permissive histone modifications at the Pdcd1 promoter together with TET availability. This combination was only seen in tolerant Teff cells following PIT, but not in Teff that transiently express PD-1. Epigenetic changes at the Pdcd1 locus therefore determine the tolerizing potential of TCR-ligation.


2007 ◽  
Vol 102 (3) ◽  
pp. 539-548 ◽  
Author(s):  
Malayannan Subramaniam ◽  
John R. Hawse ◽  
Steven A. Johnsen ◽  
Thomas C. Spelsberg

Sign in / Sign up

Export Citation Format

Share Document