scholarly journals EpOMEs act as immune suppressors in a lepidopteran insect, Spodoptera exigua

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mohammad Vatanparast ◽  
Shabbir Ahmed ◽  
Dong-Hee Lee ◽  
Sung Hee Hwang ◽  
Bruce Hammock ◽  
...  

AbstractEpoxyoctadecamonoenoic acids (EpOMEs) are epoxide derivatives of linoleic acid (9,12-octadecadienoic acid) and include 9,10-EpOME and 12,13-EpOME. They are synthesized by cytochrome P450 monooxygenases (CYPs) and degraded by soluble epoxide hydrolase (sEH). Although EpOMEs are well known to play crucial roles in mediating various physiological processes in mammals, their role is not well understood in insects. This study chemically identified their presence in insect tissues: 941.8 pg/g of 9,10-EpOME and 2,198.3 pg/g of 12,13-EpOME in fat body of a lepidopteran insect, Spodoptera exigua. Injection of 9,10-EpOME or 12,13-EpOME into larvae suppressed the cellular immune responses induced by bacterial challenge. EpOME treatment also suppressed the expression of antimicrobial peptide (AMP) genes. Among 139 S. exigua CYPs, an ortholog (SE51385) to human EpOME synthase was predicted and its expression was highly inducible upon bacterial challenge. RNA interference (RNAi) of SE51385 prevented down-regulation of immune responses at a late stage (> 24 h) following bacterial challenge. A soluble epoxide hydrolase (Se-sEH) of S. exigua was predicted and showed specific expression in all development stages and in different larval tissues. Furthermore, its expression levels were highly enhanced by bacterial challenge in different tissues. RNAi reduction of Se-sEH interfered with hemocyte-spreading behavior, nodule formation, and AMP expression. To support the immune association of EpOMEs, urea-based sEH inhibitors were screened to assess their inhibitory activities against cellular and humoral immune responses of S. exigua. 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA) was highly potent in suppressing the immune responses. The addition of AUDA to a pathogenic bacterium significantly increased bacterial pathogenicity by suppressing host immune defense. In sum, this study demonstrated that EpOMEs play a crucial role in facilitating anti-inflammatory responses in S. exigua.

2020 ◽  
Author(s):  
Shabbir Ahmed ◽  
Yonggyun Kim

ABSTRACTSeveral prostaglandins (PGs) and PG-synthesizing enzymes have been identified from insects. PGs can mediate cellular and humoral immune responses. However, uncontrolled and prolonged immune responses might have adverse effects on survival. PG catabolism in insects has not been reported. Here, using a transcriptomic analysis, we predicted two PG-degrading enzymes, PG dehydrogenase (SePGDH) and PG reductase (SePGR), in Spodoptera exigua, a lepidopteran insect. SePGDH and SePGR expression levels were upregulated after immune challenge. However, their expression peaks occurred after those of PG biosynthesis genes such as PGE2 synthase or PGD2 synthase. Indeed, SePGDH and SePGR expression levels were upregulated after injection with PGE2 or PGD2. In contrast, such upregulated expression was not detected after injection with leukotriene B4, an eicosanoid inflammatory mediator. RNA interference (RNAi) using double-stranded RNAs specific to SePGDH or SePGR suppressed their expression levels. The RNAi treatment resulted in an excessive and fatal melanization of larvae even after a non-pathogenic bacterial infection. Phenoloxidase (PO) activity mediating the melanization in larval plasma was induced by bacterial challenge or PGE2 injection. Although the induced PO activity decreased after 8 h in control, larvae treated with dsRNAs specific to PG-degrading enzyme genes kept the high PO activities for a longer period compared to control larvae. These results suggest that SePGDH and SePGR are responsible for PG degradation at a late phase of immune responses.


2020 ◽  
Vol 223 (21) ◽  
pp. jeb233221 ◽  
Author(s):  
Shabbir Ahmed ◽  
Yonggyun Kim

ABSTRACTSeveral prostaglandins (PGs) and PG-synthesizing enzymes have been identified from insects. PGs mediate cellular and humoral immune responses. However, uncontrolled and prolonged immune responses might have adverse effects on survival. PG catabolism in insects has not been reported. Here, using a transcriptomic analysis, we predicted the presence of two PG-degrading enzymes, PG dehydrogenase (SePGDH) and PG reductase (SePGR), in Spodoptera exigua, a lepidopteran insect. SePGDH and SePGR expression levels were upregulated after immune challenge. However, their expression peaks occurred after those of PG biosynthesis genes, such as those encoding PGE2 synthase or PGD2 synthase. SePGDH and SePGR expression levels were upregulated after injection with PGE2 or PGD2. In contrast, such upregulated expression was not detected after injection with leukotriene B4, an eicosanoid inflammatory mediator. RNA interference (RNAi) using double-stranded RNAs specific to SePGDH or SePGR suppressed their expression levels. The RNAi treatment resulted in an excessive and fatal melanization of larvae even after a non-pathogenic bacterial infection. Phenoloxidase (PO) activity mediating the melanization in larval plasma was induced by bacterial challenge or PGE2 injection. Although the induced PO activity decreased after 8 h in control larvae, those treated with dsRNAs specific to PG-degrading enzyme genes kept a high PO activity for a longer period. These results suggest that SePGDH and SePGR are responsible for PG degradation at a late phase of the immune response.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 449
Author(s):  
Md Tafim Hossain Hrithik ◽  
Mohammad Vatanparast ◽  
Shabbir Ahmed ◽  
Yonggyun Kim

Repat (=response to pathogen) is proposed for an immune-associated gene family from Spodoptera exigua, a lepidopteran insect. In this gene family, 46 members (Repat1–Repat46) have been identified. They show marked variations in their inducible expression patterns in response to infections by different microbial pathogens. However, their physiological functions in specific immune responses and their interactions with other immune signaling pathways remain unclear. Repat33 is a gene highly inducible by bacterial infections. The objective of this study was to analyze the physiological functions of Repat33 in mediating cellular and humoral immune responses. Results showed that Repat33 was expressed in all developmental stages and induced in immune-associated tissues such as hemocytes and the fat body. RNA interference (RNAi) of Repat33 expression inhibited the hemocyte-spreading behavior which impaired nodule formation of hemocytes against bacterial infections. Such RNAi treatment also down-regulated expression levels of some antimicrobial genes. Interestingly, Repat33 expression was controlled by eicosanoids. Inhibition of eicosanoid biosynthesis by RNAi against a phospholipase A2 (PLA2) gene suppressed Repat33 expression while an addition of arachidonic acid (a catalytic product of PLA2) to RNAi treatment recovered such suppression of Repat33 expression. These results suggest that Repat33 is a downstream component of eicosanoids in mediating immune responses of S. exigua.


2008 ◽  
Vol 116 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Jeffrey J. Olearczyk ◽  
Jeffrey E. Quigley ◽  
Bradford C. Mitchell ◽  
Tatsuo Yamamoto ◽  
In-Hae Kim ◽  
...  

Hypertension and Type 2 diabetes are co-morbid diseases that lead to the development of nephropathy. sEH (soluble epoxide hydrolase) inhibitors are reported to provide protection from renal injury. We hypothesized that the sEH inhibitor AUDA [12-(3-adamantan-1-yl-ureido)-dodecanoic acid] protects the kidney from the development of nephropathy associated with hypertension and Type 2 diabetes. Hypertension was induced in spontaneously diabetic GK (Goto–Kakizaki) rats using AngII (angiotensin II) and a high-salt diet. Hypertensive GK rats were treated for 2 weeks with either AUDA or its vehicle added to drinking water. MAP (mean arterial pressure) increased from 118±2 mmHg to 182±20 and 187±6 mmHg for vehicle and AUDA-treated hypertensive GK rats respectively. AUDA treatment did not alter blood glucose. Hypertension in GK rats resulted in a 17-fold increase in urinary albumin excretion, which was decreased with AUDA treatment. Renal histological evaluation determined that AUDA treatment decreased glomerular and tubular damage. In addition, AUDA treatment attenuated macrophage infiltration and inhibited urinary excretion of MCP-1 (monocyte chemoattractant protein-1) and kidney cortex MCP-1 gene expression. Taken together, these results provide evidence that sEH inhibition with AUDA attenuates the progression of renal damage associated with hypertension and Type 2 diabetes.


2013 ◽  
Vol 304 (1) ◽  
pp. R23-R32 ◽  
Author(s):  
Mohammed A. Nayeem ◽  
Isha Pradhan ◽  
S. Jamal Mustafa ◽  
Christophe Morisseau ◽  
John R. Falck ◽  
...  

The interaction between adenosine and soluble epoxide hydrolase (sEH) in vascular response is not known. Therefore, we hypothesized that lack of sEH in mice enhances adenosine-induced relaxation through A2A adenosine receptors (AR) via CYP-epoxygenases and peroxisome proliferator-activated receptor γ (PPARγ). sEH−/− showed an increase in A2A AR, CYP2J, and PPARγ by 31%, 65%, and 36%, respectively, and a decrease in A1AR and PPARα (30% and 27%, respectively) vs. sEH+/+. 5′-N-ethylcarboxamidoadenosine (NECA, an adenosine receptor agonist), CGS 21680 (A2A AR-agonist), and GW 7647 (PPARα-agonist)-induced responses were tested with nitro-l-arginine methyl ester (l-NAME) (NO-inhibitor; 10−4 M), ZM-241385, SCH-58261 (A2A AR-antagonists; 10−6 M), 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, an epoxyeicosatrienoic acid-antagonist; 10−5 M), 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA; 10 μM) or trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid ( t-AUCB, sEH-inhibitors; 10−5 M), and T0070907 (PPARγ-antagonist; 10−7 M). In sEH−/− mice, ACh response was not different from sEH+/+ ( P > 0.05), and l-NAME blocked ACh-responses in both sEH−/− and sEH+/+ mice ( P < 0.05). NECA (10−6 M)-induced relaxation was higher in sEH−/− (+12.94 ± 3.2%) vs. sEH+/+ mice (−5.35 ± 5.2%); however, it was blocked by ZM-241385 (−22.42 ± 1.9%) and SCH-58261(−30.04 ± 4.2%). CGS-21680 (10−6 M)-induced relaxation was higher in sEH−/− (+37.4 ± 5.4%) vs. sEH+/+ (+2.14 ± 2.8%). l-NAME (sEH−/−, +30.28 ± 4.8%, P > 0.05) did not block CGS-21680-induced response, whereas 14,15-EEZE (−7.1 ± 3.7%, P < 0.05) did. Also, AUDA and t-AUCB did not change CGS-21680-induced response in sEH−/− ( P > 0.05), but reversed in sEH+/+ (from +2.14 ± 2.8% to +45.33 ± 4.1%, and +63.37 ± 7.2, respectively). PPARα-agonist did not relax as CGS 21680 (−2.48 ± 1.1 vs. +37.4 ± 5.4%) in sEH−/−, and PPARγ-antagonist blocked (from +37.4 ± 5.4% to +9.40 ± 3.1) CGS 21680-induced relaxation in sEH−/−. Our data suggest that adenosine-induced relaxation in sEH−/− may depend on the upregulation of A2A AR, CYP2J, and PPARγ, and the downregulation of A1 AR and PPARα.


2018 ◽  
Vol 86 (7) ◽  
Author(s):  
Jaleesa M. Garth ◽  
Joseph J. Mackel ◽  
Kristen M. Reeder ◽  
Jonathan P. Blackburn ◽  
Chad W. Dunaway ◽  
...  

ABSTRACTChitin is a polysaccharide that provides structure and rigidity to the cell walls of fungi and insects. Mammals possess multiple chitinases, which function to degrade chitin, thereby supporting a role for chitinases in immune defense. However, chitin degradation has been implicated in the pathogenesis of asthma. Here, we determined the impact of acidic mammalian chitinase (AMCase) (Chia) deficiency on host defense during acute exposure to the fungal pathogenAspergillus fumigatusas well as its contribution toA. fumigatus-associated allergic asthma. We demonstrate that chitin in the fungal cell wall was detected at low levels inA. fumigatusconidia, which emerged at the highest level during hyphal transition. In response to acuteA. fumigatuschallenge,Chia−/−mice unexpectedly demonstrated lowerA. fumigatuslung burdens at 2 days postchallenge. The lower fungal burden correlated with decreased lung interleukin-33 (IL-33) levels yet increased IL-1β and prostaglandin E2(PGE2) production, a phenotype that we reported previously to promote the induction of IL-17A and IL-22. During chronicA. fumigatusexposure, AMCase deficiency resulted in lower dynamic and airway lung resistance than in wild-type mice. Improved lung physiology correlated with attenuated levels of the proallergic chemokines CCL17 and CCL22. Surprisingly, examination of inflammatory responses during chronic exposure revealed attenuated IL-17A and IL-22 responses, but not type 2 responses, in the absence of AMCase. Collectively, these data suggest that AMCase functions as a negative regulator of immune responses during acute fungal exposure and is a contributor to fungal asthma severity, putatively via the induction of proinflammatory responses.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Chia-Chi Hung ◽  
Yi-Hsuan Lee ◽  
Yi-Min Kuo ◽  
Pei-Chien Hsu ◽  
Huey-Jen Tsay ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Ruihan Shi ◽  
Lei Hou ◽  
Jue Liu

AbstractPorcine circovirus type 2 (PCV2), which serves as a major causative agent of PCV2-associated diseases and causes severe loss to the pig industry worldwide, can dysregulate the immune response and induce immunosuppression in PCV2-infected pigs. Similar to PCV2, porcine circovirus type 3 (PCV3), a newly identified swine circovirus which might be closely associated with porcine dermatitis and nephropathy syndrome, reproductive disorder, and multisystemic inflammatory responses, also interferes with host immune defense. Interaction between host immune system and PCVs is considered to be a crucial determinant of pathogenicity in pigs. Here, we sought to briefly discuss the current knowledge regarding the interaction of porcine circovirus type 2 and/or 3 with host immune cells and immune responses to better depict the viral immunomodulatory capacity, pathogenic mechanisms, and the future research direction in host immune responses to infection with PCV2 and PCV3.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2336-2336
Author(s):  
Eriko Suzuki ◽  
Naoki Matsumoto ◽  
Keita Shibata ◽  
Terumasa Hashimoto ◽  
Kazuo Honda ◽  
...  

Abstract During the past decade, the thrombolytic enzyme tissue plasminogen activator (t-PA)-based treatment has been the standard therapy for acute ischemic stroke. However, due to its hemorrhagic risk and narrow therapeutic time window (TTW), only limited patients benefit from t-PA-based therapy, and the development of an alternative therapeutic agent is urgently needed. Reducing inflammation within the infarction area to rescue penumbra is particularly important. SMTP-7 is a small molecule that enhances plasminogen activation by modulating plasminogen conformation. SMTP-7 promotes plasmin formation and clot clearance in vivo and it is effective in treating thrombotic and embolic strokes in experimental models in rodents and a nonhuman primate. Unexpectedly, SMTP-7 reduces hemorrhagic transformation and has extended TTW as compared with t-PA. The distinct effects of SMTP-7 are partly explained by suppression of inflammatory responses following thrombolytic reperfusion, unlike t-PA. Experiments with animal inflammatory disease models (ulcerative colitis, Crohn's disease, and Guillain-Barré syndrome models) suggest that the anti-inflammatory action of SMTP-7 is independent of thrombolytic activity, as a thrombolytically inactive congener, SMTP-44D, exhibits anti-inflammatory action in those models. In this study, we searched for anti-inflammatory target of SMTP and found soluble epoxide hydrolase (sEH) as a possible candidate. We searched for a target protein using an SMTP-conjugated affinity matrix, which was synthesized by coupling SMTP-50, a congener with a primary amino group on the side chain, with gel beads. Mouse liver homogenates were subjected to affinity chromatography on this matrix, and specifically bound proteins were analyzed by peptide mass fingerprint. As a result, 4 major bound proteins were assigned to full length or fragments of soluble epoxide hydrolase (sEH), a hybrid enzyme with epoxide hydrolase activity in the C-terminal domain and lipid phosphatase activity in the N-terminal domain. The sEH hydrolase converts epoxy fatty acids, such as epoxyeicosatrienoic acids (EETs) which are endogenous anti-inflammatory lipid mediators, to less-active diol forms, such as dihydroeicosatrienoic acids (DHETs). The sEH phosphatase is implicated in lipid metabolism and hydrolysis of lysophospatidic acid, whereas its precise biological role is still unclear. SMTP-7 and SMTP-44D inhibited both hydrolase (IC50 20 and 27 µM, respectively) and phosphatase (IC50 6 and 25 µM, respectively) activities of sEH. The simplest congener SMTP-0 (IC50 28 µM for hydrolase and 29 µM for phosphatase), which consists of only the core structure common with all the SMTP congeners, was used to analyze the kinetic mechanism of sEH inhibition. The inhibition of hydrolase by SMTP-0 was competitive with respect to 14,15-EET, and the inhibition of phosphatase is uncompetitive with respect to the synthetic substrate Attophos. The inhibition of phosphatase was unchanged in the presence of a potent competitive inhibitor of hydrolase, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid. Thus, SMTP-0 may bind to two distinct sites in sEH: one is the active site in the hydrolase domain, and the other is an allosteric site that affects the phosphatase domain. Inhibition of sEH hydrolase was also observed in cells in culture. The conversion of 14,15-EET to 14,15-DHET in HepG2 cells was inhibited by SMTP-7, SMTP-44D, and SMTP-0 with IC50 at 4.5, 8.8, and 1.3 mM, respectively. To confirm sEH inhibition in vivo, we traced the fate of intravenously injected EET in the liver. Treatment of wild-type mice with SMTP-7 significantly reduced the 14, 15-DHET level (∼41% reduction, P &lt;0.05), while no significant reduction was observed in sEH KO mice. Thrombolytically inactive SMTP-44D reduced the degree of edema and pro-inflammatory cytokine expression in a mouse embolic stroke model, whereas infarct size and neurological deficits were not ameliorated. Thus, it is possible that both thrombolytic and anti-inflammatory potentials of SMTP are important in its excellent therapeutic activity. Our present study provides evidence that SMTP-7 targets sEH for anti-inflammatory action. The inhibition of sEH and the profibrinolytic action due to plasminogen modulator activity may synergistically contribute to treatment of ischemic stroke. SMTP-7 is thus a promising alternative therapy for ischemic stroke. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document