scholarly journals Antibacterial apple cider vinegar eradicates methicillin resistant Staphylococcus aureus and resistant Escherichia coli

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Darshna Yagnik ◽  
Malcolm Ward ◽  
Ajit J. Shah

AbstractMethicillin-resistant Staphylococcus aureus (MRSA) and resistant Escherichia coli (rE.coli) infections can spread rapidly. Further they are associated with high morbidity and mortality from treatment failure. Therapy involves multiple rounds of ineffective antibiotics alongside unwanted side effects, alternative treatments are crucial. Apple cider vinegar (ACV) is a natural, vegan product that has been shown to have powerful antimicrobial activity hence we investigated whether ACV could ameliorate these resistant bacteria. The minimum dilution of ACV required for growth inhibition was comparable for both bacteria (1/25 dilution of ACV liquid and ACV tablets at 200 µg/ml were effective against rE. coli and MRSA). Monocyte co-culture with microbes alongside ACV resulted in an increase in monocyte phagocytosis by 21.2% and 33.5% compared to non-ACV treated but MRSA or rE. coli stimulated monocytes, respectively. Label free quantitative proteomic studies of microbial protein extracts demonstrated that ACV penetrated microbial cell membranes and organelles, altering the expression of key proteins. This resulted in significant reductions in total protein expression, moreover we could only detect ribosomal proteins; 50 s 30 s, enolase, phosphenol pyruvate and the ATP synthase subunit in rE. coli. Elongation factor iNOS and phosphoglycerate kinase OS were the only proteins present in MRSA samples following ACV treatment.

2021 ◽  
Author(s):  
Markus Huemer ◽  
Srikanth Mairpady Shambat ◽  
Sandro Pereira ◽  
Lies Van Gestel ◽  
Judith Bergada-Pijuan ◽  
...  

Staphylococcus aureus colonizes 30 to 50% of healthy adults and can cause a variety of diseases, ranging from superficial to life-threatening invasive infections such as bacteraemia and endocarditis. Often, these infections are chronic and difficult-to-treat despite adequate antibiotic therapy. Most antibiotics act on metabolically active bacteria in order to eradicate them. Thus, bacteria with minimized energy consumption resulting in metabolic quiescence, have increased tolerance to antibiotics. The most energy intensive process in cells - protein synthesis - is attenuated in bacteria entering into quiescence. Eukaryote-like serine/threonine kinases (STKs) and phosphatases (STPs) can fine-tune essential cellular processes, thereby enabling bacteria to quickly respond to environmental changes and to modulate quiescence. Here, we show that deletion of the only annotated functional STP, named Stp, in S. aureus leads to increased bacterial lag-phase and phenotypic heterogeneity under different stress challenges, including acidic pH, intracellular milieu and in vivo abscess environment. This growth delay was associated with reduced intracellular ATP levels and increased antibiotic persistence. Using phosphopeptide enrichment and mass spectrometry-based proteomics, we identified possible targets of Ser/Thr phosphorylation that regulate cellular processes and bacterial growth, such as ribosomal proteins including the essential translation elongation factor EF-G. Finally, we show that acid stress leads to a reduced translational activity in the stp deletion mutant indicating metabolic quiescence correlating with increased antibiotic persistence.


2021 ◽  
Vol 9 ◽  
Author(s):  
Thanh Chung Pham ◽  
Van-Nghia Nguyen ◽  
Yeonghwan Choi ◽  
Dongwon Kim ◽  
Ok-Sang Jung ◽  
...  

The ability to detect hypochlorite (HOCl/ClO−) in vivo is of great importance to identify and visualize infection. Here, we report the use of imidazoline-2-thione (R1SR2) probes, which act to both sense ClO− and kill bacteria. The N2C=S moieties can recognize ClO− among various typical reactive oxygen species (ROS) and turn into imidazolium moieties (R1IR2) via desulfurization. This was observed through UV–vis absorption and fluorescence emission spectroscopy, with a high fluorescence emission quantum yield (ՓF = 43–99%) and large Stokes shift (∆v∼115 nm). Furthermore, the DIM probe, which was prepared by treating the DSM probe with ClO−, also displayed antibacterial efficacy toward not only Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) but also methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum ß-lactamase–producing Escherichia coli (ESBL-EC), that is, antibiotic-resistant bacteria. These results suggest that the DSM probe has great potential to carry out the dual roles of a fluorogenic probe and killer of bacteria.


Author(s):  
SUNDAR MADASAMY ◽  
SURESH SUNDAN ◽  
LINGAKUMAR KRISHNASAMY

Objective: A simple formulation of cold cream from methanolic extract Caralluma adscendens var. attenuata (MECA) and their antimicrobial activity was tested against various clinical pathogens, namely, Escherichia coli, methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and Candida albicans. Methods: Methanol extract of these plant extract was prepared by the Soxhlet method. We analyzed phytochemical nature of theses plant, and subsequently, a cream was formulated cold-cream C. adscendens var. attenuata (FCA) different concentration such as FCA 50 mg, FCA 100 mg, and FCA 200 mg. In the present study, aimed to the antimicrobial activity of cold cream was measured by agar well diffusion method, and standard antibiotic Neosporin (market available) cream was used as positive control and dummy cold cream (without-MECA) were used as the negative control. Results: Phytochemical screening showed that the plant extracts were found a rich source of secondary metabolites. For more, the efficacy of cold cream from MECA extracts to against the clinical pathogen. Positive control Neosporin and 200 mg FCA cream was a highly significant difference in the zone of inhibition when compared to dummy cream. The 200 mg FCA was activity against Escherichia coli, methicillin-resistant Staphylococcus aureus, vancomycin-resistant E. faecium, and C. albicans highly significantly difference (p<0.05) compared FCA 50 mg and FAC 100 mg creams. Conclusion: The results from this study suggested that the cold cream form base of MECA crude had antimicrobial activity in the different clinical pathogen. They could be used as an alternative source to conventional antimicrobial agents for the treatment of pathological infection.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Thi-Diem Bui ◽  
Quang-Liem Nguyen ◽  
Thi-Bich Luong ◽  
Van Thuan Le ◽  
Van-Dat Doan

In this study, Mn-doped ZnSe/ZnS core/shell quantum dots (CSQDs) were synthesized in aqueous solution using polyethylene glycol as a surface stabilizer and successfully applied in the detection of Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) for the first time. The CSQDs were conjugated with anti-E. coli antibody and anti-MRSA antibody via protein A supported by 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide hydrochloride for fluorescent labeling of the intact bacterial cells. The detection was performed for the bacterial strains cultivated in Luria-Bertani liquid medium. The obtained results indicate that E. coli O157:H7 and MRSA can be detected within 30 min at a high sensitivity of 101 CFU/mL. This labeling method based on the highly fluorescent CSQDs may have great potential for use in the food industry to check and prevent outbreaks of foodborne illness.


Sign in / Sign up

Export Citation Format

Share Document