scholarly journals Wastewater COD characterization: RBCOD and SBCOD characterization analysis methods

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingbing Zhang ◽  
Yuting Shao ◽  
Guohua Liu ◽  
Lu Qi ◽  
Hongchen Wang ◽  
...  

AbstractWastewater characterization is the basis for process design and operation optimization of wastewater treatment plants (WWTPs). In this work, a comprehensive study of the respirometry method has been performed to evaluate the biodegradable organic matters of wastewater. First, the optimal initial substrate to biomass ratio (S0/X0) was confirmed. Second, under the optimal S0/X0, the degradation curves of wastewater carbon oxygen demand (COD) components rapidly biodegradable COD (RBCOD) and slowly biodegradable COD (SBCOD) were obtained. Third, the Mann–Kendall test was performed to confirm the time point (t2) when endogenous respiration levels were reached, and the hydrolysis model was used to determine the time point (t1) of the SBCOD degradation stage. Considering the results, an adequate wastewater COD characterization method for RBCOD and SBCOD has been proposed. This study provides strong support to carry out effective and feasible process design, process diagnosis and optimization capability, can help achieve refined and stable operational management of WWTPs.

1986 ◽  
Vol 18 (7-8) ◽  
pp. 289-296
Author(s):  
C. F. Ouyang ◽  
T. J. Wan

This study investigated and compared the treatment characteristics of three different kinds of biological wastewater treatment plants (including rotating biological contactor, trickling filter and oxidation ditch) which are currently operated in Taiwan. The field investigation of this study concentrated on the following items: the performance of biological oxygen demand (BOD) and suspended solids (SS) removal; the sludge yield rate of BOD removal; the settleability of sludge solids; the properties of sludge thickening; the power consumption and land area requirement per unit volume of wastewater. Finally, based on the results of the field investigation, a comparison of the treatment characteristics of the three different biological treatment processes was evaluated.


2021 ◽  
Vol 11 (4) ◽  
pp. 1889 ◽  
Author(s):  
Agnieszka Micek ◽  
Krzysztof Jóźwiakowski ◽  
Michał Marzec ◽  
Agnieszka Listosz ◽  
Tadeusz Grabowski

The results of research on the efficiency and technological reliability of domestic wastewater purification in two household wastewater treatment plants (WWTPs) with activated sludge are presented in this paper. The studied facilities were located in the territory of the Roztocze National Park (Poland). The mean wastewater flow rate in the WWTPs was 1.0 and 1.6 m3/day. In 2017–2019, 20 series of analyses were done, and 40 wastewater samples were taken. On the basis of the received results, the efficiency of basic pollutant removal was determined. The technological reliability of the tested facilities was specified using the Weibull method. The average removal efficiencies for the biochemical oxygen demand in 5 days (BOD5) and chemical oxygen demand (COD) were 66–83% and 62–65%, respectively. Much lower effects were obtained for total suspended solids (TSS) and amounted to 17–48%, while the efficiency of total phosphorus (TP) and total nitrogen (TN) removal did not exceed 34%. The analyzed systems were characterized by the reliability of TSS, BOD5, and COD removal at the level of 76–96%. However, the reliability of TN and TP elimination was less than 5%. Thus, in the case of biogenic compounds, the analyzed systems did not guarantee that the quality of treated wastewater would meet the requirements of the Polish law during any period of operation. This disqualifies the discussed technological solution in terms of its wide application in protected areas and near lakes, where the requirements for nitrogen and phosphorus removal are high.


Author(s):  
Yu.V. Denisova ◽  

The Nikolaishor massif is located within the heavily eroded gneisses of the Nyarta metamor¬phic complex and is an au-tochthonous massif composed of plagiogranites and kalispartic granites. The conducted petrochemical study of the least modified variety of granites of this massif made it possible to identify the petrochemical features of the studied rock, as well as to determine the geodynamic conditions for the formation of the Nikolaishor massif. According to the results of the silicate analysis, granites are high-alumina leucogranites of the potassium-sodium type. The initial substrate for the stud¬ied rocks was presumably magmatic protolith. Based on the ICP-MS analysis data, various in-dicator ratios were calculated for the granites. The obtained indicators allowed us to conclude that the rocks under consideration were formed from melts enriched mainly with light TR, which belong to a deep crustal type source. Comprehensive study of multivariate discrimi¬nant analysis indicators for the main elements of S. Agrawal, as well as diagrams of J.A. Pearce, D. Papu, N.B. Harris, showed that the rocks of the Nikolaishor massif are syncollisional granites formed in the Late Orogenic time.


2020 ◽  
Vol 81 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Seow Wah How ◽  
Jia Huey Sin ◽  
Sharon Ying Ying Wong ◽  
Pek Boon Lim ◽  
Alijah Mohd Aris ◽  
...  

Abstract Many developing countries, mostly situated in the tropical region, have incorporated a biological nitrogen removal process into their wastewater treatment plants (WWTPs). Existing wastewater characteristic data suggested that the soluble chemical oxygen demand (COD) in tropical wastewater is not sufficient for denitrification. Warm wastewater temperature (30 °C) in the tropical region may accelerate the hydrolysis of particulate settleable solids (PSS) to provide slowly-biodegradable COD (sbCOD) for denitrification. This study aimed to characterize the different fractions of COD in several sources of low COD-to-nitrogen (COD/N) tropical wastewater. We characterized the wastewater samples from six WWTPs in Malaysia for 22 months. We determined the fractions of COD in the wastewater by nitrate uptake rate experiments. The PSS hydrolysis kinetic coefficients were determined at tropical temperature using an oxygen uptake rate experiment. The wastewater samples were low in readily-biodegradable COD (rbCOD), which made up 3–40% of total COD (TCOD). Most of the biodegradable organics were in the form of sbCOD (15–60% of TCOD), which was sufficient for complete denitrification. The PSS hydrolysis rate was two times higher than that at 20 °C. The high PSS hydrolysis rate may provide sufficient sbCOD to achieve effective biological nitrogen removal at WWTPs in the tropical region.


2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Bharat Maharjan ◽  
Karin Pachel ◽  
Enn Loigu

Temporal trends provide a good interpretation of change in stormwater quality over time. This study aimed to analyse trends and influences due to stormflow and baseflow. Grab samples of 18-19 years from 1995 to 2014 recorded at outlets of 7 Tallinn watersheds were analysed for monotonic trend through seasonal Mann Kendall test for long-term, short-term, baseflow and stormflow. Statistically significant downward trends (P-value (p) < 0.05) were found for 6 – hydrocarbon (HC), 1 – suspended solids (SS), 3 – biological oxygen demand (BOD), 4 – total nitrogen (TN) and 2 – total phosphorus (TP) out of 7 sampling outlets over the last 10 years. Less significant decreasing trends (p > 0.05 and < 0.2) for 3 – SS, 1 – BOD, 1 – TN and 1 – TP were identified. Statistically significant long-term upward trends of pH were re-vealed in 5 basins, which reduced to 2 with 5 less significant upward trends over the 10 year period, indicating improve-ments in pH reduction. Härjapea has the highest pH without trend but it includes an upward trend of TN at p = 0.051. The highly possible causes for downward trends are street sweeping, sewer network improvement, decline in sub-urban agri-cultural areas, etc. The upward trend results of pH are related to increased alkalinisation due to acidic rain, weathering of carbonate rocks, sewage discharge and alkaline road dust. In most of the basins, stormflow has more influence on trends than baseflow.


2020 ◽  
Vol 15 (2) ◽  
pp. 515-527
Author(s):  
L. Desa ◽  
P. Kängsepp ◽  
L. Quadri ◽  
G. Bellotti ◽  
K. Sørensen ◽  
...  

Abstract Many wastewater treatment plants (WWTP) in touristic areas struggle to achieve the effluent requirements due to seasonal variations in population. In alpine areas, the climate also determines a low wastewater temperature, which implies long sludge retention time (SRT) needed for the growth of nitrifying biomass in conventional activated sludge (CAS). Moreover, combined sewers generate high flow and dilution. The present study shows how the treatment efficiency of an existing CAS plant with tertiary treatment can be upgraded by adding a compact line in parallel, consisting of a Moving Bed Biofilm Reactor (MBBR)-coagulation-flocculation-disc filtration. This allows the treatment of influent variations in the MBBR and a constant flow supply to the activated sludge. The performance of the new 2-step process was comparable to that of the improved existing one. Regardless significant variations in flow (10,000–25,000 m3/d) and total suspended solids (TSS) (50–300 mg/L after primary treatment) the effluent quality fulfilled the discharge requirements. Based on yearly average effluent data, TSS were 11 mg/L, chemical oxygen demand (COD) 27 mg/L and total phosphorus (TP) 0.8 mg/L. After the upgrade, ammonium nitrogen (NH4-N) dropped from 4.9 mg/L to 1.3 mg/L and the chemical consumption for phosphorus removal was reduced.


2014 ◽  
Vol 69 (9) ◽  
pp. 1942-1948 ◽  
Author(s):  
V. A. Razafimanantsoa ◽  
L. Ydstebø ◽  
T. Bilstad ◽  
A. K. Sahu ◽  
B. Rusten

The purpose of this project was to investigate the effect of selective particle removal during primary treatment on downstream biological nutrient removal processes. Bench-scale Salsnes Filter fine mesh sieves were used as a primary treatment to obtain different organic fractions to test the effect on denitrification. Activated sludge and moving bed biofilm reactor anoxic tests were performed on municipal wastewater collected from two full-scale wastewater treatment plants located around the Oslo region (Norway). About 43% of the suspended solids in the wastewater was less than 18 μm, and 14% was between 18 and 150 μm. The effect of particulate chemical oxygen demand (COD) removal on denitrification rates was very minor.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Zhaoqian Jing ◽  
Shiwei Cao

To enhance the biodegradability of residual organic pollutants in secondary effluent of wastewater treatment plants, UV photolysis and ozonation were used in combination as pretreatment before a biological aerating filter (BAF). The results indicated that UV photolysis could not remove much COD (chemical oxygen demand), and the performance of ozonation was better than the former. With UV photolysis combined with ozonation (UV/O3), COD removal was much higher than the sum of that with UV photolysis and ozonation alone, which indicated that UV photolysis could efficiently promote COD removal during ozonation. This pretreatment also improved molecular weight distribution (MWD) and biodegradability greatly. Proportion of organic compounds with molecular weight (MW) <3 kDalton was increased from 51.9% to 85.9%. COD removal rates with BAF and O3/BAF were only about 25% and 38%, respectively. When UV/O3oxidation was combined with BAF, the average COD removal rate reached above 61%, which was about 2.5 times of that with BAF alone. With influent COD ranging from 65 to 84 mg/L, the effluent COD was stably in the scope of 23–31 mg/L. The combination of UV/O3oxidation with BAF was quite efficient in organic pollutants removal for tertiary wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document