scholarly journals Global implication of mesoproterozoic (~ 1.4 Ga) magmatism within the Sette-Daban Range (Southeast Siberia)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sergey V. Malyshev ◽  
Alexei V. Ivanov ◽  
Andrey K. Khudoley ◽  
Alexander E. Marfin ◽  
Vadim S. Kamenetsky ◽  
...  

AbstractMesoproterozoic period included several global tectonic events like break-up of Nuna and formation of Rodinia. However, although Siberia is a significant piece of both supercontinents, Mesoproterozoic time is marked by quiescence of magmatic and tectonic activity in it. We report here a mafic dyke (named Gornostakh dyke) in the southeastern Siberian Craton dated at 1419 ± 32 Ma by LA-ICPMS U–Pb geochronology of apatite. The dyke has tholeiitic compositions with high MgO and alkaline content, low-Ti, and arc-like trace element pattern. Due to the absence of subduction tectonics in the study area, geochemical data could be attributed to a significant contribution from metasomatically enriched subcontinental lithospheric mantle previously modified by subduction processes. That kind of composition is common for low-Ti dykes of intraplate flood basalt provinces similar to, for example, Permian–Triassic Siberian large igneous province (LIP). Paleogeographic reconstructions suggest that Siberia was connected to Laurentia and Baltica and their reconfiguration interrupts a prolonged tectonic quiescence in the Siberian Craton from ca. 1.88 Ga reflecting a transition from Nuna to Rodinia configuration. The mafic magmatism on 1419 Ma on the southeastern margin of the Siberian Craton together with coeval extensional tectonics observed in the structure of the Sette-Daban ridge proposes a hypothetical LIP which may be a direct consequence of the beginning of this transition.

2021 ◽  
Author(s):  
Sergey Malyshev ◽  
Alexey Ivanov ◽  
Andrey Khudoley ◽  
Vadim Kamenetsky ◽  
Maya Kamenetsky ◽  
...  

Abstract Mesoproterozoic period included several global tectonic events like break-up of Nuna and formation of Rodinia. However, although Siberia is a significant piece of both supercontinents, Mesoproterozoic time is marked by quiescence of magmatic and tectonic activity in it. We report here a mafic dyke (named Gornostakh dyke) in the southeastern Siberian Craton dated at 1419 ± 32 Ma by LA-ICPMS U-Pb geochronology of apatite. Paleogeographic reconstructions suggest that Siberia was connected to Laurentia and Baltica and their reconfiguration interrupts a prolonged tectonic quiescence in the Siberian Craton from ca. 1.88 Ga reflecting a transition from Nuna to Rodinia configuration. The 1419 Ma Gornostakh dyke and coeval deformation observed in the structure of the region may be a direct consequence of this transition. The dyke has tholeiitic compositions with high MgO and alkaline content, low-Ti, and arc-like trace element pattern. Due to the absence of subduction tectonics in the study area, geochemical data could be attributed to a significant contribution from metasomatically enriched subcontinental lithospheric mantle previously modified by subduction processes. Such mafic magmatism on the margin of the Siberian Craton could be related to a hypothetic large igneous province, which initiated the continental break-up.


2020 ◽  
Author(s):  
Arto Luttinen ◽  
Jussi Heinonen ◽  
Sanni Turunen ◽  
Richard Carlson ◽  
Mary Horan

<p>Examination of the least-contaminated rocks of the Jurassic Karoo flood basalt province indicates considerable compositional variability in the mantle source. New and previously published Sr, Nd, and Pb isotopic data are suggestive of two main categories of mantle reservoirs: one coincides with the field of depleted mantle (DM) -affinity oceanic crust and the other has low initial eNd (+3.3 to 0.3) and high <sup>87</sup>Sr/<sup>86</sup>Sr (0.7039 to 0.7057) and Δ8/4 (92 to 138) typical of enriched mantle 1 (EM1) -affinity oceanic crust. Previous studies have proposed the DM type reservoir included domains affected by subduction-related fluids and recycled oceanic components (e.g. Heinonen et al., 2014). The EM1 type reservoir probably also contained subducted crustal components, but the geochemical data are suggestive of an additional primitive mantle (PM) type component (Turunen et al., 2019).</p><p>Importantly, the two reservoirs can be geochemically linked to a recently identified bilateral compositional asymmetry in the volumious Karoo flood basalts (Luttinen, 2018): The DM type  reservoir is the most likely source of Nb-depleted flood basalts in the southeastern Karoo subprovince (Lebombo rifted margin and Antarctica), whereas the EM1-PM type reservoir has been identified as the principal source of the Nb-undepleted flood basalts in the northwestern subprovince (Karoo-Kalahari-Zambezi basins). The boundary between the flood basalt subprovinces and the occurrences of the DM-affinity and EM1-PM-affinity rocks overlie the Jurassic location of the margin of the Jurassic sub-African LLSVP. Magmas derived from the EM1-PM type reservoir were largely emplaced above the deep mantle anomaly, whereas those derived from the DM type reservoir were emplaced outside the footprint of the LLSVP.</p><p>Based on isotopic similarity, the EM1-PM type reservoir of the Karoo province may record the same overall LLSVP material as the Gough component in the zoned Tristan da Cunha plume (e.g. Hoernle et al., 2015). Furthermore, it is possible that the DM type reservoir of the Karoo province, which has been interpreted to represent depleted upper mantle heated by mantle plume, could also represent a plume component and that the bilateral Karoo flood basalt province as a whole could thus register melting of a large zoned plume source associated with the margin of the sub-African LLSVP.</p><p>References</p><p>Heinonen, J.S., Carlson, R.W., Riley, T.R., Luttinen, A.V., Horan, M.F. (2014). Subduction-modified oceanic crust mixed with a depleted mantle reservoir in the sources of the Karoo continental flood basalt province. Earth and Planetary Science Letters 394, 229–241. http://dx.doi.org/10.1016/j.epsl.2014.03.012</p><p>Hoernl, K., Ronde, J., Hauff, F., Garbe-Schönberg, D., Homrighausen, S., Werner, W., Morgan, J.P. (2015).  How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot. Nature Communications 6:7799. doi: 10.1038/ncomms8799</p><p>Luttinen, A.V. (2018). Bilateral geochemical asymmetry in the Karoo large igneous province. Scientific Reports 8:5223. doi:10.1038/s41598-018-23661-3</p><p>Turunen, S.T., Luttinen, A.V., Heinonen, J.S., Jamal, D.L. (2019). Luenha picrites, Central Mozambique – Messengers from a mantle plume source of Karoo continental flood basalts? Lithos 346–347. https://doi.org/10.1016/j.lithos.2019.105152</p>


Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 886
Author(s):  
Evgeny I. Nikolenko ◽  
Konstantin V. Lobov ◽  
Alexey M. Agashev ◽  
Nikolay S. Tychkov ◽  
Maria V. Chervyakovskaya ◽  
...  

The alkaline igneous rocks of the Chompolo field (Aldan shield, Siberian craton), previously defined as kimberlites or lamproites, are more correctly classified as low-Ti lamprophyres. The emplacement age of the Ogonek pipe (137.8 ± 1.2 Ma) and the Aldanskaya dike (157.0 ± 1.6 Ma) was obtained using 40Ar/39Ar K-richterite dating. The Chompolo rocks contain abundant xenocrysts of mantle minerals (chromium-rich pyropic garnets, Cr-diopsides, spinels, etc.). The composition of the mantle xenocrysts indicates the predominance of spinel and garnet–spinel lherzolites, while the presence of garnet lherzolites, dunites, harzburgites, and eclogites is minor. The Chompolo rocks are characterized by large-ion lithophile element (LILE) and Light Rare Earth Element (LREE) enrichments, and high field strength element (HFSE) depletions. The rocks of the Ogonek pipe have radiogenic Sr (87Sr/86Sr (t) = 0.70775 and 0.70954), and highly unradiogenic εNd(t) (−20.03 and −20.44) isotopic composition. The trace element and isotopic characteristics of the Chompolo rocks are indicative of the involvement of subducted materials in their ancient enriched lithospheric mantle source. The Chompolo rocks were formed at the stage when the Mesozoic igneous activity was triggered by global tectonic events. The Chompolo field of alkaline magmatism is one of the few available geological objects, which provides the opportunity to investigate the subcontinental lithospheric mantle beneath the south part of the Siberian craton.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 394
Author(s):  
Richen Zhong ◽  
Min Zhang ◽  
Chang Yu ◽  
Hao Cui

A subduction zone plays a critical role in forging continental crust via formation of arc magmas, which are characteristically enriched in large ion lithophile elements (LILEs) and depleted in high field strength elements (HFSEs). This trace element pattern results from the different mobilities of LILEs and HFSEs during slab-to-wedge mass transfer, but the mechanisms of trace element transfer from subducting crusts are not fully understood. In this study, thermodynamic simulations are carried out to evaluate the mobilities of K and Zr, as representative cases of LILE and HFSE, respectively, in slab fluids. The fluids buffered by basaltic eclogite can dissolve > 0.1 molal of K at sub-arc depths (~3 to 5.5 GPa). However, only minor amounts of K can be liberated by direct devolatilization of altered oceanic basalt, because sub-arc dehydration mainly takes place at temperatures < 600 °C (talc-out), wherein the fluid solubility of K is very limited (<0.01 molal). Therefore, serpentinite-derived fluids are required to flush K from the eclogite. The solubility of K can be enhanced by the addition of NaCl to the fluid, because fluid Na+ can unlock phengite-bonded K via a complex ion exchange. Finally, it is further confirmed that Zr and other HFSEs are immobile in slab fluids.


Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 321 ◽  
Author(s):  
Irina Melekestseva ◽  
Valery Maslennikov ◽  
Nataliya Safina ◽  
Paolo Nimis ◽  
Svetlana Maslennikova ◽  
...  

The aim of this paper is the investigation of the role of diagenesis in the transformation of clastic sulfide sediments such as sulfide breccias from the Semenov-3 hydrothermal field (Mid-Atlantic Ridge). The breccias are composed of marcasite–pyrite clasts enclosed in a barite–sulfide–quartz matrix. Primary hydrothermal sulfides occur as colloform, fine-crystalline, porous and radial marcasite–pyrite clasts with inclusions or individual clasts of chalcopyrite, sphalerite, pyrrhotite, bornite, barite and rock-forming minerals. Diagenetic processes are responsible for the formation of more diverse authigenic mineralization including framboidal, ovoidal and nodular pyrite, coarse-crystalline pyrite and marcasite, anhedral and reniform chalcopyrite, inclusions of HgS phase and pyrrhotite–sphalerite–chalcopyrite aggregates in coarse-crystalline pyrite, zoned bornite–chalcopyrite grains, specular and globular hematite, tabular barite and quartz. The early diagenetic ovoid pyrite is enriched in most trace elements in contrast to late diagenetic varieties. Authigenic lower-temperature chalcopyrite is depleted in trace elements relative to high-temperature hydrothermal ones. Trace elements have different modes of occurrence: Se is hosted in pyrite and chalcopyrite; Tl is related to sphalerite and galena nanoinclusions; Au is associated with galena; As in pyrite is lattice-bound, whereas in chalcopyrite it is related to tetrahedrite–tennantite nanoinclusions; Cd in pyrite is hosted in sphalerite inclusions; Cd in chalcopyrite forms its own mineral; Co and Ni are hosted in chalcopyrite.


2009 ◽  
Vol 9 (5) ◽  
pp. 1567-1572 ◽  
Author(s):  
F. Masci ◽  
P. Palangio ◽  
M. Di Persio

Abstract. During the last twenty years a time-synchronized network of magnetometers has operated in Central Italy along the Apennine chain to monitor the magnetic field anomalies eventually related to the tectonic activity. At present time the network consists of five stations. In the past only few anomalies in the local geomagnetic field, possibly associated to earthquakes, has been observed, not least because the network area has shown a low-moderate seismic activity with the epicentres of the few events with Ml≥5 located away from the network station. During 2007 two Ml≈4 earthquakes occurred in proximity of two stations of the network. Here we report the magnetic anomalies in the geomagnetic field that could be related with these tectonic events. To better investigate these two events a study of ULF (ultra-low-frequency) emissions has been carried out on the geomagnetic field components H, D, and Z measured in L'Aquila Observatory during the period from January 2006 to December 2008. We want to stress that this paper refers to the period before the 2009 L'Aquila seismic sequence which main shock (Ml=5.8) of 6 April heavily damaged the medieval centre of the city and surroundings. At present time the analysis of the 2009 data is in progress.


2019 ◽  
Vol 60 (12) ◽  
pp. 2317-2338 ◽  
Author(s):  
Marie-Noëlle Guilbaud ◽  
Claus Siebe ◽  
Christine Rasoazanamparany ◽  
Elisabeth Widom ◽  
Sergio Salinas ◽  
...  

Abstract The origin of the large diversity of rock types erupted along the subduction-related Trans-Mexican Volcanic Belt (TMVB) remains highly debated. In particular, several hypotheses have been proposed to explain the contemporary eruption of calc-alkaline and alkaline magmas along the belt. The Michoacán-Guanajuato Volcanic Field (MGVF) is an atypical, vast region of monogenetic activity located in the western-central part of the TMVB. Here we present new petrographic, geochemical, and isotopic (Sr–Nd–Pb–Os) data on recent volcanics in the Jorullo-Tacámbaro area that is the closest to the oceanic trench. TMVB-related volcanics in this area are Plio-Quaternary (&lt;5 Ma) and mainly form a calc-alkaline series from basalts to dacites, with rare (&lt;5 vol. %) alkaline rocks that range from trachybasalts to trachydacites, and transitional samples. Crystal textures are consistent with rapid crystallization at shallow depth and processes of mixing of similar magma batches (magma recharge). All of the samples exhibit an arc-type trace element pattern. Alkaline and transitional magmas have higher Na2O and K2O, lower Al2O3, and higher concentrations in incompatible elements (e.g. Sr, K, Ba, Th, Ce, P) compared to calc-alkaline rocks. Calc-alkaline rocks are similar isotopically to transitional and alkaline samples, except for a few low 87Sr/86Sr samples. Sr, Nd and Pb isotopes do not correlate with MgO or 187Os/188Os, indicating that they were not significantly influenced by crustal contamination. Isotopic and trace-element systematics suggest that the Tacámbaro magmas are produced by melting of a mantle wedge fluxed by fluids derived from a mixture of subducted sediments and altered oceanic crust. Alkaline and transitional magmas can be derived from a lower degree of partial melting of a similar source to that of the calc-alkaline rocks, whereas the few low 87Sr/86Sr calc-alkaline rocks require a lower proportion of fluid derived from oceanic sediments and crust. Volcanism at the trenchward edge of the MGVF was thus driven purely by subduction during the last 5 Ma, hence discarding slab rollback in this sector of the TMVB.


2018 ◽  
Vol 156 (4) ◽  
pp. 745-758 ◽  
Author(s):  
YU WANG ◽  
INGRID UKSTINS PEATE ◽  
ZHAOHUA LUO ◽  
SHUZHI WANG ◽  
LILU CHENG ◽  
...  

AbstractDetailed structural, volcanic, and sedimentary investigations of the crustal response to the emplacement of the Middle–Late Permian Emeishan large igneous province show that a rifting system developed prior to the main stage of flood basalt eruptions, in the form of sedimentary breccias, clastic sedimentary deposits and mafic hydromagmatic units. Detrital zircon grains from sandstones yield ~750–800 Ma LA-ICP-MS 206Pb/238U age clusters, showing that material was sourced from the Yangtze crystalline basement. Gabbros and pegmatites intruded along the normal faults of the rift system yield zircon ages of 264–260 Ma, and thus constrain the timing of rifting. N–S-trending rift zones developed along the western flank of the Pan-Xi palaeo-uplift, with NE–SW- and NNE–SSW-trending rifts on the eastern side and along the western and eastern margins of the Yangtze Block. The rifting progressed in pulses, with an initial phase of normal faulting followed by rapid deposition of breccias. Later there was lower-energy deposition of sandstone, with accompanying rhyolitic eruptions. This was followed by low-energy sedimentation of mudstones and dolomites, with accompanying hydromagmatic deposits. Rift system formation was constrained by a combination of far- and near-field tectonic stresses due to plate motions and lithospheric interaction with initial Emeishan volcanism.


Sign in / Sign up

Export Citation Format

Share Document