scholarly journals Apoptosis-associated speck-like protein containing a CARD regulates the growth of pancreatic ductal adenocarcinoma

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mitsuhito Koizumi ◽  
Takao Watanabe ◽  
Junya Masumoto ◽  
Kotaro Sunago ◽  
Yoshiki Imamura ◽  
...  

AbstractApoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is a key adaptor protein of inflammasomes and a proapoptotic molecule; however, its roles in signal transduction in pancreatic ductal adenocarcinoma (PDAC) cells remain unknown. Here, we clarified the role and mechanisms of action of ASC in PDAC using clinical evidence and in vitro data. ASC expression in PDAC tissues was analyzed using public tumor datasets and immunohistochemistry results of patients who underwent surgery, and PDAC prognosis was investigated using the Kaplan–Meier Plotter. ASC expression in PDAC cells was downregulated using small-interfering RNA, and gene expression was assessed by RNA sequencing. Review of the Oncomine database and immunostaining of surgically removed tissues revealed elevated ASC expression in PDAC tumors relative to non-tumor tissue, indicating poor prognosis. We observed high ASC expression in multiple PDAC cells, with ASC silencing subsequently inhibiting PDAC cell growth and altering the expression of cell cycle-related genes. Specifically, ASC silencing reduced cyclin D1 levels and stopped the cell cycle at the G1 phase but did not modulate the expression of any apoptosis-related molecules. These results show that ASC inhibited tumor progression via cell cycle modulation in PDAC cells and could be a potential therapeutic target.

2021 ◽  
Vol 22 (9) ◽  
pp. 4966
Author(s):  
Deepkamal N. Karelia ◽  
Sangyub Kim ◽  
Manoj K. Pandey ◽  
Daniel Plano ◽  
Shantu Amin ◽  
...  

Current available therapies for pancreatic ductal adenocarcinoma (PDAC) provide minimal overall survival benefits and cause severe adverse effects. We have identified a novel molecule AS-10, a selenazolidine-bis-aspirinyl derivative, that was two to three orders of magnitude more potent than aspirin and at least one to two orders of magnitude more potent than gemcitabine in inhibiting PDAC cancer cell growth/viability against three PDAC cell lines while sparing mouse embryonic fibroblasts in the same exposure range. In Panc-1 cells, AS-10 induced apoptosis without necrosis, principally through caspase-3/7 cascade and reactive oxygen species, in addition to an induction of G1 cell cycle block. Transcriptomic profiling with RNA-seq indicated the top responses to AS-10 exposure as CDKN1A (P21Cip1), CCND1, and nuclear transcription factor-kappa B (NF-κB) complex and the top functions as cell cycle, cell death, and survival without inducing the DNA damage gene signature. AS-10 pretreatment (6 h) decreased cytokine tumor necrosis factor-alpha (TNF-α)-stimulated NF-κB nuclear translocation, DNA binding activity, and degradation of cytosolic inhibitor of κB (IκB) protein. As NF-κB activation in PDAC cells confers resistance to gemcitabine, the AS-10 combination with gemcitabine increased the in vitro cytotoxicity more than the additivity of both compounds. Overall, our results suggest AS-10 may be a promising drug lead for PDAC, both as a single agent and in combination therapy.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e16256-e16256
Author(s):  
Xianghou Xia ◽  
Yang Yu ◽  
Hongjian Yang ◽  
Dehong Zou ◽  
Canming Wang ◽  
...  

e16256 Background: Although pyroptosis is critical for macrophages against pathogen infection, its role in cancer cells remains elusive. GSDMC is a pyroptosis executioner newly identified in cancer cells and have been shown to facilitate inflammatory tumor death. However, the expression of GSDMC in Pancreatic Ductal Adenocarcinoma (PDAC), its prognostic significance and possible impact on reshaping tumor immune microenviroment in PDAC is still unknown. Methods: We investigated the expression level of GSDMC using TNM plotter with TCGA and GTEx databases, the prognostic value of GSDMC in PDAC using Kaplan-Meier plotter with TCGA, GTEx and TCGA databases. The correlations between GSDMC and immune infiltration in PDAC were calculated using TIMER2.0 and TIDE with TCGA database. We further validated the prognostic value of GSDMC with immunohistochemistry(IHC) staining on a tissue microarray of 172 cases of PDAC patients receiving treatment in our institution. Correlations between expression of GSDMC and tumor infiltration lymphacytes(TILs) cells were also analyzed on tissue samples of those 172 PDAC patients. Results: TNM plotter analysis shows that the expression of GSDMC in PDAC tumor tissue is 10.49 folds higher than it is in pancreatic normal tissues (p = 8.86*e-56). Results from Kaplan-Meier plotter analysis shows high expression of GSDMC is significantly correlated with poorer overall survival(OS), HR = 1.8(1.19−2.71) logrank P = 0.004 and shorter relapse free survival (RFS), HR = 4.6(1.94−10.88), Logrank P = 0.00014 in PDAC. Analysis with TIMER2.0 and TIDE platform shows that expression of GSDMC is positively correlated with immunosuppressive cells, Cancer Associated Fiberblast (CAF) and Meyloid Derived Tumor Suprresso Cells(MDTSC). IHC staining analysis results is also consistent with aformentioned bioinformatic analysis, showing that high GSDMC expression correlated with shorter OS and reduced Tils infiltration. Conclusions: Our findings suggest that high expression of GSDMC is related to poor prognosis and compromised immune cell infiltration in PDAC. GSDMC holds promise for serving as a valuable prognostic marker and therapeutic target in PDAC.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Peng Shen ◽  
Taoyue Yang ◽  
Qun Chen ◽  
Hao Yuan ◽  
Pengfei Wu ◽  
...  

Abstract Background A growing number of studies have focused on investigating circRNAs as crucial regulators in the progression of multiple cancer types. Nevertheless, the biological effects and underlying mechanisms of circRNAs in pancreatic ductal adenocarcinoma (PDAC) remain unclear. Methods Differentially expressed circRNAs between cancerous tissue and adjacent normal tissues were identified by RNA sequencing in PDAC. Subsequently, in vitro and in vivo functional experiments were performed to investigate the functional roles of circNEIL3 in PDAC tumour growth and metastasis. Furthermore, RNA pull-down, dual-luciferase reporter assays, RNA immunoprecipitation (RIP) assays, fluorescent in situ hybridization (FISH) and Sanger sequencing assays were performed to examine the circular interaction among circNEIL3, miR-432-5p and adenosine deaminases acting on RNA 1 (ADAR1). Results CircNEIL3 was upregulated in PDAC and promoted the progression of PDAC cells both in vitro and in vivo. Mechanistically, circNEIL3 was shown to regulate the expression of ADAR1 by sponging miR-432-5p to induce RNA editing of glioma-associated oncogene 1 (GLI1), ultimately influencing cell cycle progression and promoting epithelial-to-mesenchymal transition (EMT) in PDAC cells. Moreover, we discovered that the circNEIL3/miR-432-5p/ADAR1 axis was correlated with the PDAC clinical stage and overall survival of PDAC patients, while ADAR1 may reduce the biogenesis of circNEIL3. Conclusions Our findings reveal that circNEIL3 facilitates the proliferation and metastasis of PDAC through the circNEIL3/miR-432-5p/ADAR1/GLI1/cell cycle and EMT axis and that its expression is regulated by ADAR1 through a negative feedback loop. Therefore, circNEIL3 may serve as a prognostic marker and a therapeutic target for PDAC.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1601
Author(s):  
Cheng-Wei Chou ◽  
Yu-Hsiu Hsieh ◽  
Su-Chi Ku ◽  
Wan-Jou Shen ◽  
Gangga Anuraga ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal malignancy with poor survival outcomes. In addition, oxysterol-binding protein-like (OSBPL) family members are reported to be involved in lipid binding and transport and play critical roles in tumorigenesis. However, relationships between PDAC and OSBPL family members have not comprehensively been elucidated. In this study, we used the Oncomine and GEPIA 2 databases to analyze OSBPL transcription expressions in PDAC. The Kaplan–Meier plotter and TIMER 2.0 were used to assess the relationships between overall survival (OS) and immune-infiltration with OSBPL family members. Co-expression data from cBioPortal were downloaded to assess the correlated pathways with OSBPL gene family members using DAVID. The expressions of OSBPL3, OSBPL8, OSBPL10, and OSBPL11 were found to be highly upregulated in PDAC. Low expressions of OSBPL3, OSBPL8, and OSBPL10 indicated longer OS. The functions of OSBPL family members were mainly associated with several potential signaling pathways in cancer cells, including ATP binding, integrin binding, receptor binding, and the renin-angiotensin system (RAS) signaling pathway. The transcription levels of OSBPL gene family members were connected with several immune infiltrates. Collectively, OSBPL family members are influential biomarkers for the early diagnosis of PDAC and have prognostic value, with the promise of precise treatment of PDAC in the future.


Radiology ◽  
2015 ◽  
Vol 277 (3) ◽  
pp. 644-661 ◽  
Author(s):  
Paul F. Laeseke ◽  
Ru Chen ◽  
R. Brooke Jeffrey ◽  
Teresa A. Brentnall ◽  
Jürgen K. Willmann

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jung Hyun Jo ◽  
Sun A Kim ◽  
Jeong Hoon Lee ◽  
Yu Rang Park ◽  
Chanyang Kim ◽  
...  

Abstract Background Cancer stem cells (CSCs) are implicated in carcinogenesis, cancer progression, and recurrence. Several biomarkers have been described for pancreatic ductal adenocarcinoma (PDAC) CSCs; however, their function and mechanism remain unclear. Method In this study, secretome analysis was performed in pancreatic CSC-enriched spheres and control adherent cells for biomarker discovery. Glutaredoxin3 (GLRX3), a novel candidate upregulated in spheres, was evaluated for its function and clinical implication. Results PDAC CSC populations, cell lines, patient tissues, and blood samples demonstrated GLRX3 overexpression. In contrast, GLRX3 silencing decreased the in vitro proliferation, migration, clonogenicity, and sphere formation of cells. GLRX3 knockdown also reduced tumor formation and growth in vivo. GLRX3 was found to regulate Met/PI3K/AKT signaling and stemness-related molecules. ELISA results indicated GLRX3 overexpression in the serum of patients with PDAC compared to that in healthy controls. The sensitivity and specificity of GLRX3 for PDAC diagnosis were 80.0 and 100%, respectively. When GLRX3 and CA19–9 were combined, sensitivity was significantly increased to 98.3% compared to that with GLRX3 or CA19–9 alone. High GLRX3 expression was also associated with poor disease-free survival in patients receiving curative surgery. Conclusion Overall, these results indicate GLRX3 as a novel diagnostic marker and therapeutic target for PDAC targeting CSCs.


Author(s):  
Beate Gündel ◽  
Xinyuan Liu ◽  
Matthias Löhr ◽  
Rainer Heuchel

Pancreatic ductal adenocarcinoma (PDAC) is one of the most overlooked cancers despite its dismal median survival time of 6 months. The biggest challenges in improving patient survival are late diagnosis due to lack of diagnostic markers, and limited treatment options due to almost complete therapy resistance. The past decades of research identified the dense stroma and the complex interplay/crosstalk between the cancer- and the different stromal cells as the main culprits for the slow progress in improving patient outcome. For better ex vivo simulation of this complex tumor microenvironment the models used in PDAC research likewise need to become more diverse. Depending on the focus of the investigation, several in vitro and in vivo models for PDAC have been established in the past years. Particularly, 3D cell culture such as spheroids and organoids have become more frequently used. This review aims to examine current PDAC in vitro models, their inherent limitations, and their successful implementations in research.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yuqiong Wang ◽  
Dan Wang ◽  
Yanmiao Dai ◽  
Xiangyu Kong ◽  
Xian Zhu ◽  
...  

It has been shown that aberrant activation of the Hedgehog (Hh) and nuclear factor-kappa B (NF-κB) signaling pathways plays an important role in the pancreatic carcinogenesis, and KRAS mutation is a hallmark of pancreatic ductal adenocarcinoma (PDAC). Until now, the role of KRAS mutation in the context of crosstalk between Hh and NF-κB signaling pathways in PDAC has not been investigated. This study was to determine whether the crosstalk between the Hh and NF-κB pathways is dependent on KRAS mutation in PDAC. The correlation between Gli1, Shh, NF-κB p65 expression and KRAS mutation in PDAC tissues was firstly examined by immunohistochemistry. Next, Western blotting, qPCR, and immunofluorescence were conducted to examine the biological effects of interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α) as NF-κB signaling agonists, Shh as an Hh ligand alone or in combination with KRAS small interfering RNA (si-KRAS) in KRAS-mutant PDAC cells (MT-KRAS; SW1990 and Panc-1), wild-type KRAS PDAC cells (WT-KRAS; BxPC-3) and mutant KRAS knock-in BxPC-3 cells in vitro as well as tumor growth in vivo. KRAS mutation-dependent crosstalk between Hh and NF-κB in PDAC cells was further assessed by Ras activity and luciferase reporter assays. The aberrant Hh and NF-κB pathway activation was found in PDAC tissues with KRAS mutation. The same findings were confirmed in MT-KRAS PDAC cells and MT-KRAS knock-in BxPC-3 cells, whereas this activation was not observed in WT-KRAS PDAC cells. However, the activation was significantly down-regulated by KRAS silencing in MT-KRAS PDAC cells. Furthermore, MT-KRAS cancer cell proliferation and survival in vitro and tumor growth after inoculation with MT-KRAS cells in vivo were promoted by NF-κB and Hh signaling activation. The pivotal factor for co-activation of NF-κB and Hh signaling is MT-KRAS protein upregulation, showing that positive crosstalk between Hh and NF-κB pathways is dependent upon KRAS mutation in PDAC.


2018 ◽  
Vol 17 (8) ◽  
pp. 1670-1682 ◽  
Author(s):  
Yann Wallez ◽  
Charles R. Dunlop ◽  
Timothy Isaac Johnson ◽  
Siang-Boon Koh ◽  
Chiara Fornari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document