scholarly journals Mapping cis-regulatory elements in the midgestation mouse placenta

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rebekah R. Starks ◽  
Haninder Kaur ◽  
Geetu Tuteja

AbstractThe placenta is a temporary organ that provides the developing fetus with nutrients, oxygen, and protection in utero. Defects in its development, which may be caused by misregulated gene expression, can lead to devastating outcomes for the mother and fetus. In mouse, placental defects during midgestation commonly lead to embryonic lethality. However, the regulatory mechanisms controlling expression of genes during this period have not been thoroughly investigated. Therefore, we generated and analyzed ChIP-seq data for multiple histone modifications known to mark cis-regulatory regions. We annotated active and poised promoters and enhancers, as well as regions generally associated with repressed gene expression. We found that poised promoters were associated with neuronal development genes, while active promoters were largely associated with housekeeping genes. Active and poised enhancers were associated with placental development genes, though only active enhancers were associated with genes that have placenta-specific expression. Motif analysis within active enhancers identified a large network of transcription factors, including those that have not been previously studied in the placenta and are candidates for future studies. The data generated and genomic regions annotated provide researchers with a foundation for future studies, aimed at understanding how specific genes in the midgestation mouse placenta are regulated.

2001 ◽  
Vol 7 (2) ◽  
pp. 97-104 ◽  
Author(s):  
LI-LI HSIAO ◽  
FERNANDO DANGOND ◽  
TAKUMI YOSHIDA ◽  
ROBERT HONG ◽  
RODERICK V. JENSEN ◽  
...  

This study creates a compendium of gene expression in normal human tissues suitable as a reference for defining basic organ systems biology. Using oligonucleotide microarrays, we analyze 59 samples representing 19 distinct tissue types. Of ∼7,000 genes analyzed, 451 genes are expressed in all tissue types and designated as housekeeping genes. These genes display significant variation in expression levels among tissues and are sufficient for discerning tissue-specific expression signatures, indicative of fundamental differences in biochemical processes. In addition, subsets of tissue-selective genes are identified that define key biological processes characterizing each organ. This compendium highlights similarities and differences among organ systems and different individuals and also provides a publicly available resource (Human Gene Expression Index, the HuGE Index, http://www.hugeindex.org ) for future studies of pathophysiology.


Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 319-329 ◽  
Author(s):  
S Dziennis ◽  
RA Van Etten ◽  
HL Pahl ◽  
DL Morris ◽  
TL Rothstein ◽  
...  

Abstract CD11b is the alpha chain of the Mac-1 integrin and is preferentially expressed in myeloid cells (neutrophils, monocytes, and macrophages). We have previously shown that the CD11b promoter directs cell-type- specific expression in myeloid lines using transient transfection assays. To confirm that these promoter sequences contain the proper regulatory elements for correct myeloid expression of CD11b in vivo, we have used the -1.7-kb human CD11b promoter to direct reporter gene expression in transgenic mice. Stable founder lines were generated with two different reporter genes, a Thy 1.1 surface marker and the Escherichia coli lacZ (beta-galactosidase) gene. Analysis of founders generated with each reporter demonstrated that the CD11b promoter was capable of driving high levels of transgene expression in murine macrophages for the lifetime of the animals. Similar to the endogenous gene, transgene expression was preferentially found in mature monocytes, macrophages, and neutrophils and not in myeloid precursors. These experiments indicate that the -1.7 CD11b promoter contains the regulatory elements sufficient for high-level macrophage expression. This promoter should be useful for targeting heterologous gene expression to mature myeloid cells.


2020 ◽  
Author(s):  
Nil Aygün ◽  
Angela L. Elwell ◽  
Dan Liang ◽  
Michael J. Lafferty ◽  
Kerry E. Cheek ◽  
...  

SummaryInterpretation of the function of non-coding risk loci for neuropsychiatric disorders and brain-relevant traits via gene expression and alternative splicing is mainly performed in bulk post-mortem adult tissue. However, genetic risk loci are enriched in regulatory elements of cells present during neocortical differentiation, and regulatory effects of risk variants may be masked by heterogeneity in bulk tissue. Here, we map e/sQTLs and allele specific expression in primary human neural progenitors (n=85) and their sorted neuronal progeny (n=74). Using colocalization and TWAS, we uncover cell-type specific regulatory mechanisms underlying risk for these traits.


Author(s):  
Zsolt Albert ◽  
Cs. Deák ◽  
A. Miskó ◽  
M. Tóth ◽  
I. Papp

Wax production is an important aspect of apple (Malus domestica Borkh.) fruit development from both theoretical and practical point of views. The complex molecular mechanism that controls wax biosynthesis is still widely unknown but many studies focused on this topic. We aimed to develop further the experimental framework of these efforts with a description of an improved reference genes expression system. Results in the literature show that similarities exist among the expression of some housekeeping genes of different plant species. Based on these considerations and on gene expression data from Arabidopsis thaliana, some genes in apple were assigned for analysis. EST sequences of apple were used to design specific primers for RT-PCR experiments. Isolation of intact RNA from different apple tissues and performing RT-PCR reaction were also key point in obtaining expression patterns. To monitor DNA contamination of the RNA samples, specific primers were used that amplify intron-containing sequences from the cDNA. We found that actin primers can be used for the detection of intron containing genomic DNA, and tubulin primers are good internal controls in RT-PCR experiments. We were able to make a difference between tissue-specific and tissue-independent gene-expression, furthermore we found tissue specific differences between the expression patterns of candidate genes, that are potentially involved in wax-biosynthesis. Our results show that KCS1 and KCS4 are overexpressed in the skin tissue, this could mean that these genes have skin-specific expression in apple fruit.


2020 ◽  
Vol 21 (21) ◽  
pp. 8317
Author(s):  
Rebekah R. Starks ◽  
Rabab Abu Alhasan ◽  
Haninder Kaur ◽  
Kathleen A. Pennington ◽  
Laura C. Schulz ◽  
...  

During pregnancy, the placenta is important for transporting nutrients and waste between the maternal and fetal blood supply, secreting hormones, and serving as a protective barrier. To better understand placental development, we must understand how placental gene expression is regulated. We used RNA-seq data and ChIP-seq data for the enhancer associated mark, H3k27ac, to study gene regulation in the mouse placenta at embryonic day (e) 9.5, when the placenta is developing a complex network of blood vessels. We identified several upregulated transcription factors with enriched binding sites in e9.5-specific enhancers. The most enriched transcription factor, PLAGL1 had a predicted motif in 233 regions that were significantly associated with vasculature development and response to insulin stimulus genes. We then performed several experiments using mouse placenta and a human trophoblast cell line to understand the role of PLAGL1 in placental development. In the mouse placenta, Plagl1 is expressed in endothelial cells of the labyrinth layer and is differentially expressed in placentas from mice with gestational diabetes compared to placentas from control mice in a sex-specific manner. In human trophoblast cells, siRNA knockdown significantly decreased expression of genes associated with placental vasculature development terms. In a tube assay, decreased PLAGL1 expression led to reduced cord formation. These results suggest that Plagl1 regulates overlapping gene networks in placental trophoblast and endothelial cells, and may play a critical role in placental development in normal and complicated pregnancies.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 235 ◽  
Author(s):  
Hannah Swahn ◽  
Ann Harris

The cystic fibrosis transmembrane conductance regulator (CFTR) gene is an attractive target for gene editing approaches, which may yield novel therapeutic approaches for genetic diseases such as cystic fibrosis (CF). However, for gene editing to be effective, aspects of the three-dimensional (3D) structure and cis-regulatory elements governing the dynamic expression of CFTR need to be considered. In this review, we focus on the higher order chromatin organization required for normal CFTR locus function, together with the complex mechanisms controlling expression of the gene in different cell types impaired by CF pathology. Across all cells, the CFTR locus is organized into an invariant topologically associated domain (TAD) established by the architectural proteins CCCTC-binding factor (CTCF) and cohesin complex. Additional insulator elements within the TAD also recruit these factors. Although the CFTR promoter is required for basal levels of expression, cis-regulatory elements (CREs) in intergenic and intronic regions are crucial for cell-specific and temporal coordination of CFTR transcription. These CREs are recruited to the promoter through chromatin looping mechanisms and enhance cell-type-specific expression. These features of the CFTR locus should be considered when designing gene-editing approaches, since failure to recognize their importance may disrupt gene expression and reduce the efficacy of therapies.


Reproduction ◽  
2005 ◽  
Vol 129 (5) ◽  
pp. 651-657 ◽  
Author(s):  
Tae Bon Koo ◽  
Haengseok Song ◽  
Irene Moon ◽  
Kyuyong Han ◽  
Chen Chen ◽  
...  

The objective of the present investigation was to examine the spatio-temporal expression of three members of the ETS family of transcription factors, ERM, ER81, and PEA3, in the peri-implantation mouse uterus and in the ovary. These three factors belong to the PEA3 subfamily and are known to mediate diverse functions ranging from neuronal development to tumor progression. As transcription factors, they regulate the expression of a number of genes with various biological functions. Since several genes with known roles in the reproductive processes have been shown to be under the regulation of one of these factors, we sought to investigate the expression of ERM, ER81, and PEA3 in the mouse ovary and uterus. Quantitative RT-PCR analyses showed that ERM, ER81, and PEA3 were all expressed in the peri-implantation mouse uterus, with higher levels of expression on days 4 and 5 of pregnancy. To determine the cell type-specific expression of these factors, we employedin situhybridization, the results of which revealed that ERM was expressed in both the epithelium and the stroma on days 4 and 5 of pregnancy. Uterine glands showed a high expression of ERM on those days. ERM was also highly expressed in the corpora lutea of the mouse ovary. Both ER81 and PEA3 were expressed at low levels in the stroma on days 4 and 5. On day 8, while ERM and PEA3 were mainly expressed in the embryo and were at low levels in the maternal decidua in a diffused pattern, ER81 was highly expressed in the vascular bed of the mesometrial deciduum. Both ER81 and PEA3 were undetectable in the mouse ovary. Collectively, these data show that ERM is implicated in the early event of implantation as well as in ovarian functions, while ER81 is involved in the establishment of the maternal vasculature for subsequent placental development. PEA3 is apparently an embryonic factor for early embryogenesis.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3583-3583
Author(s):  
Muluken S Belew ◽  
Stefan Rentas ◽  
Laura de Rooij ◽  
Kristin J Hope

Abstract The Musashi-2 (MSI2) RNA binding protein is now recognized as a key regulator of hematopoietic stem cells (HSCs). Its expression is most elevated in the primitive HSC compartment and progressively decreases with differentiation. In mouse models of CML, ectopic expression of MSI2 drives progression from the chronic to the blast crisis state while in the human context its aberrantly high expression correlates with more aggressive CML disease states and is associated with poor prognosis in AML. These studies suggest that the precise molecular regulation of MSI2 gene expression may be among the critical mechanisms underlying balanced HSC self-renewal and differentiation and as a result, the prevention of leukemic transformation/progression. Despite the clear importance of understanding how Msi2 maintains an appropriate stem cell-specific expression level, very little is understood of the transcription factors (TFs) that mediate this. To define those factors that govern MSI2 expression and function specifically in the HSC compartment we undertook a systematic approach to map and define relevant regulatory elements of the MSI2 minimal promoter. We dissected a 3.5 kb region 5' upstream of MSI2's translational start site (TSS) shared between mouse and human and thus having the greatest potential of containing regulatory elements key to a conserved MSI2 stem-cell-specific gene expression program. Progressive 5'-terminal deletions of this region cloned upstream of a luciferase reporter gene and transfected into K562 and 293T model cell lines allowed us to define a minimal conserved promoter region from -588 to -203 bp upstream of the TSS that reports accurately on endogenous MSI2 expression. Coupled with in silico prediction of TF that bind this region, systematic TF binding site mutagenesis and luciferase reporter assays in model cell lines identified USF2 and PLAG1 as TFs whose direct binding to the MSI2 minimal promoter direct reporter activity. Loss and gain of function studies in K562 cells confirm that these factors co-regulate the transactivation of endogenous MSI2. Moreover we show in the most relevant primary human CD34+ hematopoietic cell context that these factors bind the MSI2 minimal promoter. While USF2 is a ubiquitously expressed TF across the hematopoietic hierarchy, the uniquely restricted expression of PLAG1 within only the most primitive of hematopoietic cells suggests that it specifically contributes to the heightened stem cell-specific expression of MSI2. Consistent with its role as a key driver of MSI2 and thus an enforcer of its pro-self-renewal functions, we found that overexpression of PLAG1 in human Lin-CD34+ cord blood cells enhanced MSI2 transcription and increased total Colony Forming Unit (CFU) output and re-plating efficiency of primitive CFU progenitors. PLAG1 overexpression also offered a pro-survival advantage to these cells as evidenced by a more than two-fold reduction in Annexin V positive cells compared to negative controls. We have thus described important transcriptional circuitry that governs stem-cell specific expression of MSI2 while at the same time functionally validated PLAG1 as a novel factor capable of modulating primitive hematopoietic cell self-renewal and survival. Disclosures No relevant conflicts of interest to declare.


1996 ◽  
Vol 16 (7) ◽  
pp. 3245-3254 ◽  
Author(s):  
V Ngô ◽  
D Gourdji ◽  
J N Laverrière

The methylation patterns of the rat prolactin (rPRL) (positions -440 to -20) and growth hormone (rGH) (positions -360 to -110) promoters were analyzed by bisulfite genomic sequencing. Two normal tissues, the anterior pituitary and the liver, and three rat pituitary GH3 cell lines that differ considerably in their abilities to express both genes were tested. High levels of rPRL gene expression were correlated with hypomethylation of the CpG dinucleotides located at positions -277 and -97, near or within positive cis-acting regulatory elements. For the nine CpG sites analyzed in the rGH promoter, an overall hypomethylation-expression coupling was also observed for the anterior pituitary, the liver, and two of the cell lines. The effect of DNA methylation was tested by measuring the transient expression of the chloramphenicol acetyltransferase reporter gene driven by a regionally methylated rPRL promoter. CpG methylation resulted in a decrease in the activity of the rPRL promoter which was proportional to the number of modified CpG sites. The extent of the inhibition was also found to be dependent on the position of methylated sites. Taken together, these data suggest that site-specific methylation may modulate the action of transcription factors that dictate the tissue-specific expression of the rPRL and rGH genes in vivo.


2019 ◽  
Author(s):  
Bidossessi Wilfried Hounkpe ◽  
Francine Chenou ◽  
Franciele Lima ◽  
Erich Vinicius de Paula

AbstractHousekeeping (HK) genes are constitutively expressed genes that are required for the maintenance of basic cellular functions. Despite their importance in the calibration of gene expression, as well as the understanding of many genomic and evolutionary features, important discrepancies have been observed in studies that previously identified these genes. Here, we present Housekeeping Transcript Atlas (HRT Atlas v1.0, www.housekeeping.unicamp.br) a web-based database which addresses some of the previously observed limitations in the identification of these genes, and offers a more accurate database of human and mouse HK genes and transcripts. The database was generated by mining massive human and mouse RNA-seq data sets, including 12,482 and 507 high-quality RNA-seq samples from 82 human non-disease tissues/cells and 15 healthy tissues/cells of C57BL/6 wild type mouse, respectively. User can visualize the expression and download lists of 2,158 human HK transcripts from 2,176 HK genes and 3,024 mouse HK transcripts from 3,277 mouse HK genes. HRT Atlas also offers the most stable and suitable tissue selective candidate reference transcripts for normalization of qPCR experiments. Specific primers and predicted modifiers of gene expression for some of these HK transcripts are also proposed. HRT Atlas has also been integrated with regulatory elements from Epiregio server. All of these resources can be accessed and downloaded from any computer or small device web browsers.


Sign in / Sign up

Export Citation Format

Share Document