scholarly journals Valorized deinking paper residue as fill material for geotechnical structures

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karmen Fifer Bizjak ◽  
Barbara Likar ◽  
Ana Mladenovič ◽  
Vesna Zalar Serjun

AbstractThis study introduces a novel geotechnical composite material comprising two types of fill material sourced from the paper industry—deinking paper sludge ash (DPSA) and deinking paper sludge (DPS). Five composites with different DPSA and DPS contents were investigated. Two composites were selected for further analyses. The technology and procedure for composite installation were implemented in field tests. The composites with 80% and 70% DPSA exhibited the elasticity required to withstand minor landslide slip deformations, in addition to achieving sufficiently high values of uniaxial compressive strength. The composites had a low maximum dry density value, which led to fewer settlements in the entire support structure. The enhanced shear characteristics can enable the construction of a thinner retaining wall. The delay between preparation and installation of the composites was further investigated. The field tests confirmed that the composites with 80% and 70% DPSA can be installed on the construction site 4 h and even 24 h after mixing. In 2018, a retaining wall structure with 70% DPSA and 30% DPS was successfully implemented near a railway line using conventional technology as followed-up research to the herein presented study. Results have been derived from work performed in the scope of the H2020 Paperchain project in which novel circular economy models centered on the valorization of the waste streams generated by the pulp and paper industry as secondary raw material for several resource-intensive sectors, including the construction sector, have been developed. Environmental benefits are savings in natural raw materials, reduction of landfill disposal as well as CO2 emission reduction.

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 746
Author(s):  
Xinquan Wang ◽  
Cong Zhu ◽  
Hongguo Diao ◽  
Yingjie Ning

The retaining wall is a common slope protection structure. To tackle the current lack of sustainable and highly prefabricated retaining walls, an environmentally friendly prefabricated ecological grid retaining wall with high construction efficiency has been developed. Due to the asymmetrical condition of the project considered in this paper, the designed prefabricated ecological grid retaining wall was divided into the excavation section and the filling section. By utilizing the ABAQUS finite element software, the stress and deformation characteristics of the retaining wall columns, soil, anchor rods, and inclined shelves in an excavation section, and the force and deformation relationships of the columns, rivets, and inclined shelves in three working conditions in a filling section were studied. The study results imply that the anchor rods may affect the columns in the excavation section and the stress at the column back changes in an M-shape with height. Moreover, the peak appears at the contact point between the column and the anchor rod. The displacement of the column increases slowly along with the height, and the column rotates at its bottom. In the excavation section, the stress of the anchor rod undergoes a change at the junction of the structure. The inclined shelf is an open structure and is very different from the retaining plate structure of traditional pile-slab retaining walls. Its stress distribution follows a repeated U-shaped curve, which is inconsistent with the trend of the traditional soil arching effect between piles, which increases first and then decreases. For the retaining wall structure in the filling section, the numerical simulated vehicle load gives essentially consistent results with the effects of the equivalent filling on the concrete column.


Bina Teknika ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 1
Author(s):  
Endang Srihari Mochni ◽  
Arief Budhyantoro

Many attempts to reduce the volume of Sidoarjo mudflow that came out, one of which is the use of Sidoarjo mud for making bricks. The results of research in the chemical laboratory show that the Sidoarjo mud mineral content is mostly silica and alumina minerals, so it is very supportive for use as a material for making bricks. Making bricks requires mixed materials, one of which is paper sludge. Paper sludge waste is discharged from the paper industry, which can pollute the environment if it is discharged directly into the environment. Therefore, a solution is needed by utilizing the potential of the sludge waste. One of them is by using paper sludge as an additive in making bricks, because most of the components of paper sludge waste are calcium carbonate. In building materials, calcium carbonate can function as an additive so that paper sludge waste can be used as an additional material in making bricks. The purpose of this study is to determine the best ratio of Sidoarjo mud with paper sludge to the quality of the bricks, find out the best combustion temperature to the quality of the bricks produced, and compare the quality of the bricks before and after burning. The bricks are synthesized with a variation of the ratio of Sidoarjo mud raw material and paper sludge (1: 0, 1: 1, 2: 1, 3: 1) and variations in combustion temperature (no combustion, 400°C, 450°C, 500°C, 750°C, 900°C). In this study, the best quality of bricks according to SNI is 2: 1 ratio bricks with a combustion temperature of 750 ° C. The ratio of 2: 1 brick with a combustion temperature of 750°C has a percentage of water absorption of 17.17% and compressive strength of 37.78 kg / cm2.


2021 ◽  
Vol 13 (2) ◽  
pp. 979
Author(s):  
Karmen Fifer Bizjak ◽  
Barbara Likar ◽  
Stanislav Lenart

The construction industry uses a large amount of natural virgin material for different geotechnical structures. In Europe alone, 11 million tonnes of solid waste is generated per year as a result of the production of almost 100 million tonnes of paper. The objective of this research is to develop a new geotechnical composite from residues of the deinking paper industry and to present its practical application, e.g., as a backfill material behind a retaining structure. After different mixtures were tested in a laboratory, the technology was validated by building a pilot retaining wall structure in a landslide region near a railway line. It was confirmed that a composite with 30% deinking sludge and 70% deinking sludge ash had a high enough strength but experienced some deformations before failure. Special attention was paid to the impact of transport, which, due to the time lag between the mixing and installation of the composite, significantly reduced its strength. The pilot retaining wall structure promotes the use of recycled materials with a sustainable design, while adhering to government-mandated measures.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (6) ◽  
pp. 9-15 ◽  
Author(s):  
TOMI HIETANEN ◽  
JUHA TAMPER ◽  
KAJ BACKFOLK

The use of a new, technical, high-purity magnesium hydroxide-based peroxide bleaching additive was evaluated in full mill-scale trial runs on two target brightness levels. Trial runs were conducted at a Finnish paper mill using Norwegian spruce (Picea abies) as the raw material in a conventional pressurized groundwood process, which includes a high-consistency peroxide bleaching stage. On high brightness grades, the use of sodium-based additives cause high environmental load from the peroxide bleaching stage. One proposed solution to this is to replace all or part of the sodium hydroxide with a weaker alkali, such as magnesium hydroxide. The replacement of traditional bleaching additives was carried out stepwise, ranging from 0% to 100%. Sodium silicate was dosed in proportion to sodium hydroxide, but with a minimum dose of 0.5% by weight on dry pulp. The environmental effluent load from bleaching of both low and high brightness pulps was significantly reduced. We observed a 35% to 48% reduction in total organic carbon (TOC), 37% to 40% reduction in chemical oxygen demand (COD), and 34% to 60% reduction in biological oxygen demand (BOD7) in the bleaching effluent. At the same time, the target brightness was attained with all replacement ratios. No interference from transition metal ions in the process was observed. The paper quality and paper machine runnability remained good during the trial. These benefits, in addition to the possibility of increasing production capacity, encourage the implementation of the magnesium hydroxide-based bleaching concept.


2012 ◽  
Vol 501 ◽  
pp. 34-38 ◽  
Author(s):  
Kar Keng Lim ◽  
Roslinda Shamsudin ◽  
Muhammad Azmi Abdul Hamid

In this study, paper sludge ash, a waste from pulp and paper industry was used as a filler in fabricating Plaster of Paris/paper sludge ash composites. Various percentage of paper sludge ash was used, namely 1wt.%, 3wt.%, 5wt.% and 7wt.%. The effect of paper sludge ash on the compressive strength of the Plaster of Paris was studied. The mixed powder of paper sludge ash and Plaster of Paris were form into a 6 mm diameter and 12 mm height cylindrical samples. The composites were characterized theirs density where it shows that the density decreased as the amount of paper sludge ash increased. The compressive strength of the composites also decreased from 11.67 MPa without paper sludge ash addition to 0.50 MPa at 7wt.% paper sludge ash. However, the requirement of strength for Plaster of Paris in industry is between 8.96 MPa to 20.68 MPa. From the SEM observation, sample contain higher percentage of paper sludge ash exhibited more porosity. Therefore with the addition of 1wt.% of paper sludge ash into Plaster of Paris can be a promising construction material.


2013 ◽  
Vol 30 (2) ◽  
pp. 143-153 ◽  
Author(s):  
Jessica R. Goldberger ◽  
Robert Emmet Jones ◽  
Carol A. Miles ◽  
Russell W. Wallace ◽  
Debra A. Inglis

AbstractCommercial farmers have been using polyethylene plastic mulch since the 1950s. Despite the affordability and effectiveness of polyethylene mulch, the disposal process is financially and environmentally costly. Biodegradable plastic mulches, an ecologically sustainable alternative to polyethylene mulch films, were introduced in the 1980s. Biodegradable plastic mulches can be tilled into the soil or composted at the end of the season, reducing the labor and environmental costs associated with plastic removal and disposal. However, research results are mixed as to the effectiveness, degradability and ease-of-use of biodegradable plastic mulches. In 2008–2012, researchers, funded by a USDA Specialty Crop Research Initiative grant, conducted surveys and focus groups in three different agricultural regions of the USA to better understand the barriers and bridges to the adoption of biodegradable plastic mulches for specialty crop production systems. Data on the experiences and views of specialty crop growers, agricultural extension agents, agricultural input suppliers, mulch manufacturers and other stakeholders showed that the major adoption barriers were insufficient knowledge, high cost and unpredictable breakdown. The major bridges to adoption were reduced waste, environmental benefits and interest in further learning. These findings are discussed with reference to the classic innovation diffusion model, specifically work on the innovation–decision process and the attributes of innovations. The study results can be used to guide the activities of those involved in the design, development and promotion of biodegradable plastic mulches for US specialty crop production systems.


Author(s):  
Barbara Widera

The paper addresses the topic of nature-based solutions applied in the architectural and urban design. These ideas are analyzed in the context of the opportunities they create for the humanity in terms of the sustainable growth and environmental protection. Nature-based solutions are inherently taken from nature. The first part of the paper presents their tremendous potential to be energy and resource-efficient, and resilient to change. In the second part of the research particular concepts driven from nature (copied form nature or inspired by nature) proposed for the buildings and cities are described and evaluated. The author discusses their functional usefulness, spatial appropriateness, adaptation to local conditions, end-user comfort, environmental benefits and the possibility of duplication. Nature-based solutions applied in urban planning can make cities more climate resilient and contribute to ecosystems restoration. The paper describes how sustainable urbanization can stimulate economic growth, make cities more attractive and enhance well-being of the inhabitants. It is also explained how particular buildings can benefit from the concepts driven from nature e.g. by increasing their energy efficiency and performance in terms of raw material consumption. In purpose to properly response to the climate challenge, humanity has to establish a new kind of partnership with nature. Using nature-based solutions should be considered as an important part of this approach. The concepts presented in this paper show some of the most promising options, such as integration of living systems with built systems and innovative combinations of soft and hard engineering. In conclusion some of the most promising nature-based solutions for climate resilient buildings and cities are indicated


Author(s):  
A. A. AL-Rawas

Collapsible soils are encountered in arid and semi-arid regions. Such soils cause potential construction problems due to their collapse upon wetting. The collapse phenomenon is primarily related to the open structure of the soil. Several soil collapse classifications based on parameters such as moisture content, dry density, Atterberg limits and clay content have been proposed in the literature as indicators of the soil collapse potential. Direct measurement of the magnitude of collapse, using laboratory and/or field tests, is essential once a soil showed indications of collapse potential. Treatment methods such as soil replacement, compaction control and chemical stabilization showed significant reduction in the settlement of collapsible soils. The design of foundations on collapsible soils depends on the depth of the soil, magnitude of collapse and economics of the design. Strip foundations are commonly used when collapsing soil extends to a shallow depth while piles and drilled piers are recommended in cases where the soil extends to several meters. This paper provides a comprehensive review of collapsible soils. These include the different types of collapsible soils, mechanisms of collapse, identification and classification methods, laboratory and field testing, treatment methods and guidelines for foundation design.


Sign in / Sign up

Export Citation Format

Share Document