scholarly journals FLT3-ITD allelic ratio and HLF expression predict FLT3 inhibitor efficacy in adult AML

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jarno Kivioja ◽  
Disha Malani ◽  
Ashwini Kumar ◽  
Mika Kontro ◽  
Alun Parsons ◽  
...  

AbstractFLT3 internal tandem duplication (FLT3-ITD) is a frequent mutation in acute myeloid leukemia (AML) and remains a strong prognostic factor due to high rate of disease recurrence. Several FLT3-targeted agents have been developed, but determinants of variable responses to these agents remain understudied. Here, we investigated the role FLT3-ITD allelic ratio (ITD-AR), ITD length, and associated gene expression signatures on FLT3 inhibitor response in adult AML. We performed fragment analysis, ex vivo drug testing, and next generation sequencing (RNA, exome) to 119 samples from 87 AML patients and 13 healthy bone marrow controls. We found that ex vivo response to FLT3 inhibitors is significantly associated with ITD-AR, but not with ITD length. Interestingly, we found that the HLF gene is overexpressed in FLT3-ITD+ AML and associated with ITD-AR. The retrospective analysis of AML patients treated with FLT3 inhibitor sorafenib showed that patients with high HLF expression and ITD-AR had better clinical response to therapy compared to those with low ITD-AR and HLF expression. Thus, our findings suggest that FLT3 ITD-AR together with increased HLF expression play a role in variable FLT3 inhibitor responses observed in FLT3-ITD+ AML patients.

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3577
Author(s):  
Julia Gerstmeier ◽  
Anna-Lena Possmayer ◽  
Süleyman Bozkurt ◽  
Marina E. Hoffmann ◽  
Ivan Dikic ◽  
...  

Glioblastoma (GBM) is the most common and most aggressive primary brain tumor, with a very high rate of recurrence and a median survival of 15 months after diagnosis. Abundant evidence suggests that a certain sub-population of cancer cells harbors a stem-like phenotype and is likely responsible for disease recurrence, treatment resistance and potentially even for the infiltrative growth of GBM. GBM incidence has been negatively correlated with the serum levels of 25-hydroxy-vitamin D3, while the low pH within tumors has been shown to promote the expression of the vitamin D3-degrading enzyme 24-hydroxylase, encoded by the CYP24A1 gene. Therefore, we hypothesized that calcitriol can specifically target stem-like glioblastoma cells and induce their differentiation. Here, we show, using in vitro limiting dilution assays, quantitative real-time PCR, quantitative proteomics and ex vivo adult organotypic brain slice transplantation cultures, that therapeutic doses of calcitriol, the hormonally active form of vitamin D3, reduce stemness to varying extents in a panel of investigated GSC lines, and that it effectively hinders tumor growth of responding GSCs ex vivo. We further show that calcitriol synergizes with Temozolomide ex vivo to completely eliminate some GSC tumors. These findings indicate that calcitriol carries potential as an adjuvant therapy for a subgroup of GBM patients and should be analyzed in more detail in follow-up studies.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3548-3548
Author(s):  
Felicitas Thol ◽  
Frederik Damm ◽  
Katharina Wagner ◽  
Katarina Reinhardt ◽  
Jan-Henning Klusmann ◽  
...  

Abstract Abstract 3548 Minimal Residual Disease (MRD) monitoring has become an important tool for risk and treatment stratification in hematological malignancies. MRD monitoring in FLT3 mutated patients has been difficult in the past as FLT3-ITDs vary from patient to patient and individual primer/probe sets would be required to assess MRD over time. In the present study we evaluated next-generation sequencing (NGS) as a new tool for MRD monitoring in patients with FLT3-ITD and NPM1 mutations. Five pediatric and 5 adult AML patients with FLT3-ITD and 10 adult patients with NPM1 mutations were analyzed by NGS with a target coverage of 10,000 reads per amplicon. Pediatric samples were collected at diagnosis, day 22 and after consolidation chemotherapy while adult samples were collected at different time points (average 4 timepoints per patient). Samples were sequenced unidirectionally on eight-lane PicoTiterPlates on a GS FLX sequencing system. In total, 2,563,550 sequencing reads were generated, corresponding to a total of 1,176,171 high-quality sequencing reads. NPM1 mutations were analyzed by quantitative RT-PCR using the MutaQuant kit from Ipsogen (Ispogen, Marseille, France). Allelic ratios of FLT3-ITDs were determined by fragment analysis on a DNA sequencer using GeneMapper software 4.0. First, the sensitivity of NGS to detect mutated alleles was evaluated by sequencing serial dilutions of a patient sample that had 46.3 percent mutated FLT3-ITD alleles at diagnosis. With a target coverage of 10,000 sequences and an allelic ratio of 46.3 percent the theoretical detection sensitivity was at most 1 in 4630 sequences. In fact, the allelic ratio in the sequenced samples linearly decreased in the tested dilutions down to the 5×10-4 dilution (Pearson correlation R2=.996). Samples from healthy volunteers were tested negative for both FLT3-ITD and NPM1 mutations (n=3). Allelic ratios from three diagnostic specimens of FLT3-ITD mutated patients were highly reproducible when determined in two independent NGS runs. As proof of principle we analyzed NPM1 mutated patients by NGS and quantitative RT-PCR in parallel. The mean allelic ratio of NPM1 mutants at diagnosis was 0.37 (range 0.29–0.46). An allelic ratio of 0.37 and 0.4 was measured in peripheral blood of two patients, and thus was similar to ratios in bone marrow. Concordant results between NGS and qRT-PCR were found in 38 samples (95%), whereas in two samples one method did not detect the mutation while the other did (NGS and RT-PCR were negative once each). We analyzed relapse samples in four patients. The NPM1 mutation was detected consistently by both methods in three patients at allelic ratios of 0.013, 0.19, and 0.32, while one patient had lost the mutation at relapse. One patient had an atypical NPM1 mutation for which no RT-PCR kit was available. NGS allowed quantification of the allelic ratio in this patient, which was 0.37 at diagnosis, 0.06 after one cycle of induction therapy, and 0 after the second cycle of induction therapy. In FLT3-ITD mutated patients we could determine insertion site, insertion length, number of individual clones, and allelic ratio from NGS data. The mean allelic ratio in diagnostic samples was 0.27 as measured by NGS and 0.4 as measured by fragment analysis. Three follow up samples were negative by fragment analysis, while a small clone could still be detected with NGS in these samples (allelic ratio 0.0004 to 0.001). All other samples were concordant between fragment analysis and NGS. NGS was used to determine MRD status in 5 patients with childhood AML harboring mutated FLT3. A reduction of 2–3 orders of magnitude was achieved during induction chemotherapy. During consolidation a further decrease or disappearance of mutated alleles was achieved in 3 patients, who remained in remission. However, allelic burden increased in 2 patients after first consolidation treatment (HAM) by 9- and 735-fold compared to the allelic ratio after induction therapy, and they relapsed 74 and 303 days later. Thus, accurate determination of the FLT3-ITD allelic ratio by NGS may become useful to identify patients before overt relapse. In summary, we show that NGS can be used for minimal residual disease assessment in FLT3-ITD mutated AML patients. The sensitivity of the method is scalable depending on the read depth, however, an adequate sensitivity level for efficient MRD detection still needs to be determined. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 7000-7000 ◽  
Author(s):  
Mark J. Levis ◽  
Alexander E. Perl ◽  
Giovanni Martinelli ◽  
Jorge E. Cortes ◽  
Andreas Neubauer ◽  
...  

7000 Background: The FLT3 inhibitor, gilteritinib, showed superior response and overall survival (OS) compared with salvage chemotherapy (SC) in patients (pts) with FLT3mut+ R/R AML in the phase 3 ADMIRAL study. We analyzed the impact of baseline co-mutations and FLT3-ITD allelic ratio (AR) on response and OS. Methods: A total of 37 recurrently mutated genes in AML (Archer Core Myeloid Panel) were analyzed by next-generation sequencing; the cutoff for co-mutation positivity (co-mut+) was ≥0.027. Baseline FLT3-ITD AR ( FLT3-ITD to FLT3 wild-type DNA) was measured by the LeukoStrat CDx FLT3 Mutation Assay. The median FLT3-ITD AR value of 0.77 was used to define high (≥0.77) vs low (<0.77) FLT3-ITD AR. Results: Analysis of 361 FLT3mut+ pts identified four major co-mutation cohorts, each with ≥10% of pts: NPM1 (n=173; 47.9%), DNMT3A (n=115; 31.9%), DNMT3A/NPM1 (n=86; 23.8%) , and WT1 (n=65; 18.0%). In addition, seven pts (1.9%) had all three co-mutations (ie, NPM1, DNMT3A, and WT1). The gilteritinib arm had superior response rates and OS across all four major co-mutation cohorts, with the greatest survival benefit in pts with DNMT3A/NPM1 co-mut+ (Table). In FLT3-ITD AR analyses (n=335), gilteritinib conferred longer OS than SC in pts with a high or low FLT3-ITD AR (gilteritinib: high FLT3-ITD AR, 7.1 mos vs low FLT3-ITD AR, 10.6 mos; SC: high FLT3-ITD AR, 4.3 mos vs low FLT3-ITD AR, 6.9 mos). In both arms, OS was longer in the low FLT3-ITD AR cohort than the high FLT3-ITD AR cohort but the difference in the gilteritinib arm was not statistically significant (gilteritinib: HR=1.341, P=0.0712; SC: HR=2.01, P=0.0021). Conclusions: The ADMIRAL trial shows that the clinical benefit of gilteritinib in FLT3mut+ R/R AML is maintained regardless of NPM1, DNMT3A, DNMT3A/ NPM1, or WT1 co-mut+ or high FLT3-ITD AR. Clinical trial information: NCT02421939. [Table: see text]


Author(s):  
Julia Gerstmeier ◽  
Anna-Lena Possmayer ◽  
Süleyman Bozkurt ◽  
Marina E. Hoffmann ◽  
Ivan Dikic ◽  
...  

: Glioblastoma (GBM) is the most common and most aggressive primary brain tumor with a very high rate of recurrence and a median survival of 15 months after diagnosis. Abundant evi-dence suggests that a certain sub-population of cancer cells harbors a stem-like phenotype and is likely responsible for disease recurrence, treatment resistance and potentially even for the infil-trative growth of GBM. GBM incidence has been negatively correlated with the serum levels of 25-hydroxy-vitamin D3, while the low pH within tumors has been shown to promote the ex-pression of the vitamin D3-degrading enzyme 24-hydroxylase, encoded by the CYP24A1 gene. Therefore, we hypothesized that calcitriol can specifically target stem-like glioblastoma cells and induce their differentiation. Here, we show using in vitro limiting dilution assays, quantita-tive real-time PCR and ex vivo adult organotypic brain slice transplantation cultures that thera-peutic doses of calcitriol, the hormonally active form of vitamin D3, reduces stemness to varying extent in a panel of investigated GSC lines and effectively hinders tumor growth of responding GSCs ex vivo. We further show that calcitriol synergizes with Temozolomide ex vivo to com-pletely eliminate some GSC tumors. These findings indicate that calcitriol carries potential as an adjuvant therapy for a subgroup of GBM patients and should be analyzed in more detail in fol-low-up studies.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3727
Author(s):  
Dafne Jacome Sanz ◽  
Juuli Raivola ◽  
Hanna Karvonen ◽  
Mariliina Arjama ◽  
Harlan Barker ◽  
...  

Background: Dysregulated lipid metabolism is emerging as a hallmark in several malignancies, including ovarian cancer (OC). Specifically, metastatic OC is highly dependent on lipid-rich omentum. We aimed to investigate the therapeutic value of targeting lipid metabolism in OC. For this purpose, we studied the role of PCSK9, a cholesterol-regulating enzyme, in OC cell survival and its downstream signaling. We also investigated the cytotoxic efficacy of a small library of metabolic (n = 11) and mTOR (n = 10) inhibitors using OC cell lines (n = 8) and ex vivo patient-derived cell cultures (PDCs, n = 5) to identify clinically suitable drug vulnerabilities. Targeting PCSK9 expression with siRNA or PCSK9 specific inhibitor (PF-06446846) impaired OC cell survival. In addition, overexpression of PCSK9 induced robust AKT phosphorylation along with increased expression of ERK1/2 and MEK1/2, suggesting a pro-survival role of PCSK9 in OC cells. Moreover, our drug testing revealed marked differences in cytotoxic responses to drugs targeting metabolic pathways of high-grade serous ovarian cancer (HGSOC) and low-grade serous ovarian cancer (LGSOC) PDCs. Our results show that targeting PCSK9 expression could impair OC cell survival, which warrants further investigation to address the dependency of this cancer on lipogenesis and omental metastasis. Moreover, the differences in metabolic gene expression and drug responses of OC PDCs indicate the existence of a metabolic heterogeneity within OC subtypes, which should be further explored for therapeutic improvements.


2021 ◽  
Vol 49 (1) ◽  
pp. 030006052098493
Author(s):  
Jie Zhang ◽  
Yixuan Ren ◽  
Liping Pan ◽  
Junli Yi ◽  
Tong Guan ◽  
...  

Objective This study analyzed drug resistance and mutations profiles in Mycobacterium tuberculosis isolates in a surveillance site in Huairou District, Beijing, China. Methods The proportion method was used to assess drug resistance profiles for four first-line and seven second-line anti-tuberculosis (TB) drugs. Molecular line probe assays were used for the rapid detection of resistance to rifampicin (RIF) and isoniazid (INH). Results Among 235 strains of M. tuberculosis, 79 (33.6%) isolates were resistant to one or more drugs. The isolates included 18 monoresistant (7.7%), 19 polyresistant (8.1%), 28 RIF-resistant (11.9%), 24 multidrug-resistant (MDR) (10.2%), 7 pre-extensively drug-resistant (XDR, 3.0%), and 2 XDR strains (0.9%). A higher rate of MDR-TB was detected among previously treated patients than among patients with newly diagnosed TB (34.5% vs. 6.8%). The majority (62.5%) of RIF-resistant isolates exhibited a mutation at S531L in the DNA-dependent RNA polymerase gene. Meanwhile, 62.9% of INH-resistant isolates carried a mutation at S315T1 in the katG gene. Conclusion Our results confirmed the high rate of drug-resistant TB, especially MDR-TB, in Huairou District, Beijing, China. Therefore, detailed drug testing is crucial in the evaluation of MDR-TB treatment.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii120-ii120
Author(s):  
Daniel Zeitouni ◽  
Michael Catalino ◽  
Jordan Wise ◽  
Kathryn Pietrosimone ◽  
Sean McCabe ◽  
...  

Abstract BACKGROUND GBM is driven by various genomic alterations. Next generation sequencing (NGS) may reveal targetable alterations. The goal of this study was to describe how NGS can inform targeted therapy (TT) selection. METHODS The medical records of patients (pts) with GBM from 2017–2019 were reviewed. Pts with actionable mutations were included in the analysis. At first progression (PD1), two cohorts of pts were defined: cohort A received TT, while cohort B received physician’s choice chemotherapy (PCC). Regression analyses were used to determine OS and PFS between cohorts. A stratified cox model was utilized to assess the effect of TT, where KPS level (low vs high) was utilized as a stratification factor. A heat map was generated describing the landscape of mutations. Disease response in cohort A was graded per RANO criteria. RESULTS There were 38 GBM pts with actionable alterations. Cohort A had 15 (39%) pts and cohort B had 23 (61%) pts. Of the 26 common alterations, 11 (42%) were deemed actionable. Pts with higher KPS were more likely to receive TT. Pts with a KPS ≥ 70 had a longer PFS while on TT. Although not well powered, pts in cohort A had a longer median OS relative to cohort B (HR 0.37 CI 0.10–1.38). The objective response rate (ORR) was 93%, with afatinib and cabozantinib resulting in complete response, one pt had progressive disease while on TT. CONCLUSION NGS for recurrent GBM yields a high rate of actionable alterations. Pts that go on TT are often younger and with higher KPS. This likely plays into their improved survival; however, it is notable that the high ORR reflects the value of NGS in deciding on TT to match alterations that are likely to respond. In conclusion, patient selection and availability of NGS impacts outcomes in recurrent GBM.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi221-vi222
Author(s):  
Gerhard Jungwirth ◽  
Tao Yu ◽  
Cao Junguo ◽  
Catharina Lotsch ◽  
Andreas Unterberg ◽  
...  

Abstract Tumor-organoids (TOs) are novel, complex three-dimensional ex vivo tissue cultures that under optimal conditions accurately reflect genotype and phenotype of the original tissue with preserved cellular heterogeneity and morphology. They may serve as a new and exciting model for studying cancer biology and directing personalized therapies. The aim of our study was to establish TOs from meningioma (MGM) and to test their usability for large-scale drug screenings. We were capable of forming several hundred TO equal in size by controlled reaggregation of freshly prepared single cell suspension of MGM tissue samples. In total, standardized TOs from 60 patients were formed, including eight grade II and three grade III MGMs. TOs reaggregated within 3 days resulting in a reducted diameter by 50%. Thereafter, TO size remained stable throughout a 14 days observation period. TOs consisted of largely viable cells, whereas dead cells were predominantly found outside of the organoid. H&E stainings confirmed the successful establishment of dense tissue-like structures. Next, we assessed the suitability and reliability of TOs for a robust large-scale drug testing by employing nine highly potent compounds, derived from a drug screening performed on several MGM cell lines. First, we tested if drug responses depend on TO size. Interestingly, drug responses to these drugs remained identical independent of their sizes. Based on a sufficient representation of low abundance cell types such as T-cells and macrophages an overall number of 25.000 cells/TO was selected for further experiments revealing FDA-approved HDAC inhibitors as highly effective drugs in most of the TOs with a mean z-AUC score of -1.33. Taken together, we developed a protocol to generate standardized TO from MGM containing low abundant cell types of the tumor microenvironment in a representative manner. Robust and reliable drug responses suggest patient-derived TOs as a novel drug testing model in meningioma research.


Sign in / Sign up

Export Citation Format

Share Document