scholarly journals Involvement of the zebrafish trrap gene in craniofacial development

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taichi Suzuki ◽  
Yo Hirai ◽  
Tomoko Uehara ◽  
Rie Ohga ◽  
Kenjiro Kosaki ◽  
...  

AbstractTrrap (transformation/transcription domain-associated protein) is a component shared by several histone acetyltransferase (HAT) complexes and participates in transcriptional regulation and DNA repair; however, the developmental functions of Trrap in vertebrates are not fully understood. Recently, it has been reported that human patients with genetic mutations in the TRRAP gene show various symptoms, including facial dysmorphisms, microcephaly and global developmental delay. To investigate the physiological functions of Trrap, we established trrap gene-knockout zebrafish and examined loss-of-function phenotypes in the mutants. The trrap zebrafish mutants exhibited smaller eyes and heads than the wild-type zebrafish. The size of the ventral pharyngeal arches was reduced and the mineralization of teeth was impaired in the trrap mutants. Whole-mount in situ hybridization analysis revealed that dlx3 expression was narrowly restricted in the developing ventral pharyngeal arches, while dlx2b expression was diminished in the trrap mutants. These results suggest that trrap zebrafish mutants are useful model organisms for a human disorder associated with genetic mutations in the human TRRAP gene.

2006 ◽  
Vol 291 (2) ◽  
pp. F341-F349 ◽  
Author(s):  
Qi Cai ◽  
Natalia I. Dmitrieva ◽  
Joan D. Ferraris ◽  
Luis F. Michea ◽  
Jesus M. Salvador ◽  
...  

The response of renal inner medullary (IM) collecting duct cells (mIMCD3) to high NaCl involves increased expression of Gadd45 and p53, both of which have important effects on growth and survival of the cells. However, mIMCD3 cells, being immortalized by SV40, proliferate rapidly, which is known to sensitize cells to high NaCl, whereas IM cells in situ proliferate very slowly and survive much higher levels of NaCl. In the present studies, we have examined the importance of Gadd45 and p53 for survival of normal IM cells in their usual high-NaCl environment by using more slowly proliferating second-passage mouse inner medullary epithelial (p2mIME) cells and comparing cells from wild-type and gene knockout mice. Acutely elevating NaCl (and/or urea) reduces Gadd45a, but increases Gadd45b and Gadd45g mRNA, depending on the mix of NaCl and urea and the rate of increase of osmolality. Nevertheless, p2mIME cells from Gadd45b−/−, Gadd45g−/−, and Gadd45bg−/− mice survive elevation of NaCl (or urea) essentially the same as do wild-type cells. p53−/− Cells do not tolerate as high a concentration of NaCl (or urea) as p53+/+ cells, but urinary concentrating ability of p53−/− mice is normal, as is the histology of inner medullas from p53−/− and Gadd45abg−/− mice. Thus although Gadd45 and p53 may play roles in osmotically stressed mIMCD3 cells, we do not find that their expression makes an important difference, either for Gadd45 in slower proliferating p2mIME cells or for Gadd45 or p53 in normal inner medullary epithelial cells in situ.


2016 ◽  
Vol 283 (1837) ◽  
pp. 20160945 ◽  
Author(s):  
Jean-Noël Hubert ◽  
François Allal ◽  
Caroline Hervet ◽  
Monique Ravakarivelo ◽  
Zsigmond Jeney ◽  
...  

The capacity of organisms to rapidly evolve in response to environmental changes is a key feature of evolution, and studying mutation compensation is a way to evaluate whether alternative routes of evolution are possible or not. Common carps ( Cyprinus carpio ) carrying a homozygous loss-of-function mutation for the scale cover gene fgfr1a1 , causing the ‘mirror’ reduced scale cover, were introduced in Madagascar a century ago. Here we show that carps in Malagasy natural waters are now predominantly covered with scales, though they still all carry the homozygous mutation. We also reveal that the number of scales in mutated carps is under strong polygenic genetic control, with a heritability of 0.49. As a whole, our results suggest that carps submitted to natural selection could evolve a wild-type-like scale cover in less than 40 generations from standing polygenic genetic variation, confirming similar findings mainly retrieved from model organisms.


2020 ◽  
Vol 65 (1) ◽  
pp. e01948-20
Author(s):  
Dalin Rifat ◽  
Si-Yang Li ◽  
Thomas Ioerger ◽  
Keshav Shah ◽  
Jean-Philippe Lanoix ◽  
...  

ABSTRACTThe nitroimidazole prodrugs delamanid and pretomanid comprise one of only two new antimicrobial classes approved to treat tuberculosis (TB) in 50 years. Prior in vitro studies suggest a relatively low barrier to nitroimidazole resistance in Mycobacterium tuberculosis, but clinical evidence is limited to date. We selected pretomanid-resistant M. tuberculosis mutants in two mouse models of TB using a range of pretomanid doses. The frequency of spontaneous resistance was approximately 10−5 CFU. Whole-genome sequencing of 161 resistant isolates from 47 mice revealed 99 unique mutations, of which 91% occurred in 1 of 5 genes previously associated with nitroimidazole activation and resistance, namely, fbiC (56%), fbiA (15%), ddn (12%), fgd (4%), and fbiB (4%). Nearly all mutations were unique to a single mouse and not previously identified. The remaining 9% of resistant mutants harbored mutations in Rv2983 (fbiD), a gene not previously associated with nitroimidazole resistance but recently shown to be a guanylyltransferase necessary for cofactor F420 synthesis. Most mutants exhibited high-level resistance to pretomanid and delamanid, although Rv2983 and fbiB mutants exhibited high-level pretomanid resistance but relatively small changes in delamanid susceptibility. Complementing an Rv2983 mutant with wild-type Rv2983 restored susceptibility to pretomanid and delamanid. By quantifying intracellular F420 and its precursor Fo in overexpressing and loss-of-function mutants, we provide further evidence that Rv2983 is necessary for F420 biosynthesis. Finally, Rv2983 mutants and other F420H2-deficient mutants displayed hypersusceptibility to some antibiotics and to concentrations of malachite green found in solid media used to isolate and propagate mycobacteria from clinical samples.


2019 ◽  
Vol 10 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Chuanman Zhou ◽  
Jintao Luo ◽  
Xiaohui He ◽  
Qian Zhou ◽  
Yunxia He ◽  
...  

NALCN (Na+leak channel, non-selective) is a conserved, voltage-insensitive cation channel that regulates resting membrane potential and neuronal excitability. UNC79 and UNC80 are key regulators of the channel function. However, the behavioral effects of the channel complex are not entirely clear and the neurons in which the channel functions remain to be identified. In a forward genetic screen for C. elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated multiple loss-of-function mutations in unc-80 and unc-79. C. elegans NALCN mutants exhibited similarly defective MeSa avoidance. Interestingly, NALCN, unc-80 and unc-79 mutants all showed wild type-like responses to other attractive or repelling odorants, suggesting that NALCN does not broadly affect odor detection or related forward and reversal behaviors. To understand in which neurons the channel functions, we determined the identities of a subset of unc-80-expressing neurons. We found that unc-79 and unc-80 are expressed and function in overlapping neurons, which verified previous assumptions. Neuron-specific transgene rescue and knockdown experiments suggest that the command interneurons AVA and AVE and the anterior guidepost neuron AVG can play a sufficient role in mediating unc-80 regulation of the MeSa avoidance. Though primarily based on genetic analyses, our results further imply that MeSa might activate NALCN by direct or indirect actions. Altogether, we provide an initial look into the key neurons in which the NALCN channel complex functions and identify a novel function of the channel in regulating C. elegans reversal behavior through command interneurons.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110059
Author(s):  
Xinwen Zhang ◽  
Shaozhi Zhao ◽  
Hongwei Liu ◽  
Xiaoyan Wang ◽  
Xiaolei Wang ◽  
...  

Fucosidosis is a rare lysosomal storage disorder characterized by deficiency of α-L-fucosidase with an autosomal recessive mode of inheritance. Here, we describe a 4-year-old Chinese boy with signs and symptoms of fucosidosis but his parents were phenotypically normal. Whole exome sequencing (WES) identified a novel homozygous single nucleotide deletion (c.82delG) in the exon 1 of the FUCA1 gene. This mutation will lead to a frameshift which will result in the formation of a truncated FUCA1 protein (p.Val28Cysfs*105) of 132 amino acids approximately one-third the size of the wild type FUCA1 protein (466 amino acids). Both parents were carrying the mutation in a heterozygous state. This study expands the mutational spectrum of the FUCA1 gene associated with fucosidosis and emphasises the benefits of WES for accurate and timely clinical diagnosis of this rare disease.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 54
Author(s):  
Christine Landlinger ◽  
Lenka Tisakova ◽  
Vera Oberbauer ◽  
Timo Schwebs ◽  
Abbas Muhammad ◽  
...  

Bacterial vaginosis is characterized by an imbalance of the vaginal microbiome and a characteristic biofilm formed on the vaginal epithelium, which is initiated and dominated by Gardnerella bacteria, and is frequently refractory to antibiotic treatment. We investigated endolysins of the type 1,4-beta-N-acetylmuramidase encoded on Gardnerella prophages as an alternative treatment. When recombinantly expressed, these proteins demonstrated strong bactericidal activity against four different Gardnerella species. By domain shuffling, we generated several engineered endolysins with 10-fold higher bactericidal activity than any wild-type enzyme. When tested against a panel of 20 Gardnerella strains, the most active endolysin, called PM-477, showed minimum inhibitory concentrations of 0.13–8 µg/mL. PM-477 had no effect on beneficial lactobacilli or other species of vaginal bacteria. Furthermore, the efficacy of PM-477 was tested by fluorescence in situ hybridization on vaginal samples of fifteen patients with either first time or recurring bacterial vaginosis. In thirteen cases, PM-477 killed the Gardnerella bacteria and physically dissolved the biofilms without affecting the remaining vaginal microbiome. The high selectivity and effectiveness in eliminating Gardnerella, both in cultures of isolated strains as well as in clinically derived samples of natural polymicrobial biofilms, makes PM-477 a promising alternative to antibiotics for the treatment of bacterial vaginosis, especially in patients with frequent recurrence.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Anne-Cécile Ribou ◽  
Klaus Reinhardt

Abstract Objective Sperm ageing has major evolutionary implications but has received comparatively little attention. Ageing in sperm and other cells is driven largely by oxidative damage from reactive oxygen species (ROS) generated by the mitochondria. Rates of organismal ageing differ across species and are theorized to be linked to somatic ROS levels. However, it is unknown whether sperm ageing rates are correlated with organismal ageing rates. Here, we investigate this question by comparing sperm ROS production in four lines of Drosophila melanogaster that have previously been shown to differ in somatic mitochondrial ROS production, including two commonly used wild-type lines and two lines with genetic modifications standardly used in ageing research. Results Somatic ROS production was previously shown to be lower in wild-type Oregon-R than in wild-type Dahomey flies; decreased by the expression of alternative oxidase (AOX), a protein that shortens the electron transport chain; and increased by a loss-of-function mutation in dj-1β, a gene involved in ROS scavenging. Contrary to predictions, we found no differences among these four lines in the rate of sperm ROS production. We discuss the implications of our results, the limitations of our study, and possible directions for future research.


Author(s):  
Daria Nitarska ◽  
Robert Boehm ◽  
Thomas Debener ◽  
Rares Calin Lucaciu ◽  
Heidi Halbwirth

AbstractThe CRISPR/Cas9 system is a remarkably promising tool for targeted gene mutagenesis, and becoming ever more popular for modification of ornamental plants. In this study we performed the knockout of flavonoid 3′-hydroxylase (F3′H) with application of CRISPR/Cas9 in the red flowering poinsettia (Euphorbia pulcherrima) cultivar ‘Christmas Eve’, in order to obtain plants with orange bract colour, which accumulate prevalently pelargonidin. F3′H is an enzyme that is necessary for formation of cyanidin type anthocyanins, which are responsible for the red colour of poinsettia bracts. Even though F3′H was not completely inactivated, the bract colour of transgenic plants changed from vivid red (RHS 45B) to vivid reddish orange (RHS 33A), and cyanidin levels decreased significantly compared with the wild type. In the genetically modified plants, an increased ratio of pelargonidin to cyanidin was observed. By cloning and expression of mutated proteins, the lack of F3′H activity was confirmed. This confirms that a loss of function mutation in the poinsettia F3′H gene is sufficient for obtaining poinsettia with orange bract colour. This is the first report of successful use of CRISPR/Cas9 for genome editing in poinsettia.


2021 ◽  
Vol 22 (13) ◽  
pp. 6673
Author(s):  
Xiaochao Qu ◽  
Mei Liao ◽  
Weiwei Liu ◽  
Yisheng Cai ◽  
Qiaorong Yi ◽  
...  

Wingless-type MMTV integration site family, member 16 (wnt16), is a wnt ligand that participates in the regulation of vertebrate skeletal development. Studies have shown that wnt16 can regulate bone metabolism, but its molecular mechanism remains largely undefined. We obtained the wnt16-/- zebrafish model using the CRISPR-Cas9-mediated gene knockout screen with 11 bp deletion in wnt16, which led to the premature termination of amino acid translation and significantly reduced wnt16 expression, thus obtaining the wnt16-/- zebrafish model. The expression of wnt16 in bone-related parts was detected via in situ hybridization. The head, spine, and tail exhibited significant deformities, and the bone mineral density and trabecular bone decreased in wnt16-/- using light microscopy and micro-CT analysis. RNA sequencing was performed to explore the differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the down-regulated DEGs are mainly concentrated in mTOR, FoxO, and VEGF pathways. Protein–protein interaction (PPI) network analysis was performed with the detected DEGs. Eight down-regulated DEGs including akt1, bnip4, ptena, vegfaa, twsg1b, prkab1a, prkab1b, and pla2g4f.2 were validated by qRT-PCR and the results were consistent with the RNA-seq data. Overall, our work provides key insights into the influence of wnt16 gene on skeletal development.


Genetics ◽  
1993 ◽  
Vol 135 (2) ◽  
pp. 321-326 ◽  
Author(s):  
H Mitsuzawa

Abstract The Saccharomyces cerevisiae strain P-28-24C, from which cAMP requiring mutants derived, responded to exogenously added cAMP. Upon the addition of cAMP, this strain showed phenotypes shared by mutants with elevated activity of the cAMP pathway. Genetic analysis involving serial crosses of this strain to a strain with another genetic background revealed that the responsiveness to cAMP results from naturally occurring loss-of-function alleles of PDE1 and PDE2, which encode low and high affinity cAMP phosphodiesterases, respectively. In addition, P-28-24C was found to carry a mutation conferring slow growth that lies in CYR1, which encodes adenylate cyclase, and the slow growth phenotype caused by the cyr1 mutation was suppressed by the pde2 mutation. Therefore P-28-24C is fortuitously a pde1 pde2 cyr1 triple mutant. Responsiveness to cAMP conferred by pde mutations suggests that S. cerevisiae cells are permeable to cAMP to some extent and that the apparent absence of effect of exogenously added cAMP on wild-type cells is due to immediate degradation by cAMP phosphodiesterases.


Sign in / Sign up

Export Citation Format

Share Document