scholarly journals C-type lectin receptor DCIR contributes to hippocampal injury in acute neurotropic virus infection

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Melanie Stoff ◽  
Tim Ebbecke ◽  
Malgorzata Ciurkiewicz ◽  
Suvarin Pavasutthipaisit ◽  
Sabine Mayer-Lambertz ◽  
...  

AbstractNeurotropic viruses target the brain and contribute to neurologic diseases. C-type lectin receptors (CLRs) are pattern recognition receptors that recognize carbohydrate structures on endogenous molecules and pathogens. The myeloid CLR dendritic cell immunoreceptor (DCIR) is expressed by antigen presenting cells and mediates inhibitory intracellular signalling. To investigate the effect of DCIR on neurotropic virus infection, mice were infected experimentally with Theiler’s murine encephalomyelitis virus (TMEV). Brain tissue of TMEV-infected C57BL/6 mice and DCIR−/− mice were analysed by histology, immunohistochemistry and RT-qPCR, and spleen tissue by flow cytometry. To determine the impact of DCIR deficiency on T cell responses upon TMEV infection in vitro, antigen presentation assays were utilised. Genetic DCIR ablation in C57BL/6 mice was associated with an ameliorated hippocampal integrity together with reduced cerebral cytokine responses and reduced TMEV loads in the brain. Additionally, absence of DCIR favoured increased peripheral cytotoxic CD8+ T cell responses following TMEV infection. Co-culture experiments revealed that DCIR deficiency enhances the activation of antigen-specific CD8+ T cells by virus-exposed dendritic cells (DCs), indicated by increased release of interleukin-2 and interferon-γ. Results suggest that DCIR deficiency has a supportive influence on antiviral immune mechanisms, facilitating virus control in the brain and ameliorates neuropathology during acute neurotropic virus infection.

2021 ◽  
Vol 22 (13) ◽  
pp. 6982
Author(s):  
Suvarin Pavasutthipaisit ◽  
Melanie Stoff ◽  
Tim Ebbecke ◽  
Malgorzata Ciurkiewicz ◽  
Sabine Mayer-Lambertz ◽  
...  

Neurotropic viruses target the brain and contribute to neurologic diseases. Caspase recruitment domain containing family member 9 (CARD9) controls protective immunity in a variety of infectious disorders. To investigate the effect of CARD9 in neurotropic virus infection, CARD9−/− and corresponding C57BL/6 wild-type control mice were infected with Theiler’s murine encephalomyelitis virus (TMEV). Brain tissue was analyzed by histology, immunohistochemistry and molecular analyses, and spleens by flow cytometry. To determine the impact of CARD9 deficiency on T cell responses in vitro, antigen presentation assays were utilized. Genetic ablation of CARD9 enhanced early pro-inflammatory cytokine responses and accelerated infiltration of T and B cells in the brain, together with a transient increase in TMEV-infected cells in the hippocampus. CARD9−/− mice showed an increased loss of neuronal nuclear protein+ mature neurons and doublecortin+ neuronal precursor cells and an increase in β-amyloid precursor protein+ damaged axons in the hippocampus. No effect of CARD9 deficiency was found on the initiation of CD8+ T cell responses by flow cytometry and co-culture experiments using virus-exposed dendritic cells or microglia-enriched glial cell mixtures, respectively. The present study indicates that CARD9 is dispensable for the initiation of early antiviral responses and TMEV elimination but may contribute to the modulation of neuroinflammation, thereby reducing hippocampal injury following neurotropic virus infection.


2020 ◽  
Author(s):  
Yuejin Liang ◽  
Panpan Yi ◽  
Wenjuan Ru ◽  
Zuliang Jie ◽  
Hui Wang ◽  
...  

Abstract Background The Zika virus (ZIKV) outbreak that occurred in multiple countries was linked to increased risk of neurological disorders and congenital defects. However, host immunity and immune-mediated pathogenesis in ZIKV infection are not well understood. Interleukin-22 (IL-22) is a crucial cytokine for regulating host immunity in infectious diseases. Whether IL-22 plays a role in ZIKV infection is unknown. Methods The cellular source of IL-22 was identified in IFNAR−/− mice and WT neonatal mice during ZIKV infection. To determine the role of IL-22, we challenged 1-day-old wild-type (WT) and IL-22−/− mice with ZIKV and monitored clinical manifestations. Glial cell activation in the brain was assessed by confocal imaging. ZIKV-specific CD8+ T cell responses in both the spleen and brain were analyzed by flow cytometry. In addition, we infected mouse primary astrocytes in vitro, and characterized the reactive astrocyte phenotype. Human glial cell line was also infected with ZIKV in the presence of IL-22, followed by the evaluation of cell proliferation, cytokine expression and viral loads. Results We found that γδ T cells were the main source of IL-22 during ZIKV infection in both the spleen and brain. WT mice began to develop weight loss, staggered steps, bilateral hind limb paralysis, weakness at 10 days post-infection (dpi), and ultimately succumbed to infection at 16–19 dpi. Surprisingly, IL-22 deficiency lessened weight loss, moderated the systemic inflammatory response, and greatly reduced the incidence of neurological disorders and mortality. ZIKV infection facilitated a neurotoxic polarization of A1-prone astrocytes in vitro. Additional analysis demonstrated that the absence of IL-22 resulted in reduced activation of microglia and astrocytes in the cortex. Although IL-22 displayed a marginal effect on glial cells in vitro, IL-22−/− mice mounted more vigorous ZIKV-specific CD8+ T cell responses, which led to a more effective control of ZIKV in the brain. Conclusions Our data revealed a pathogenic role of IL-22 in ZIKV encephalitis.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2426-2426 ◽  
Author(s):  
Eleni Kotsiou ◽  
Jessica Okosun ◽  
Andrew James Clear ◽  
Sameena Iqbal ◽  
Jude Fitzgibbon ◽  
...  

Abstract Introduction Genetic aberrations of Tumor Necrosis Factor Receptor Superfamily 14 (TNFRSF14, also known as HVEM) have been shown to occur at high frequencies in patients (pts) with follicular lymphoma (FL). HVEM is a ligand for B and T lymphocyte attenuator (BTLA) which negatively regulates T cell responses and BTLA stimulation reduces acute graft-versus-host disease (aGvHD) in murine allogeneic hematopoietic cell transplantation (AHCT) models. As activated FL B cells are potent alloantigen presenting cells, we hypothesized that TNFRSF14 aberrations in FL B cells would reduce expression of HVEM and potentiate capacity of FL B cells to stimulate allogeneic T cell responses. We therefore sought to determine the functional effect of TNFRSF14 aberrations on FL B cell-stimulated donor T cell alloresponses in vitro. We also examined the impact of TNFRSF14 aberrations on the outcome of FL pts after HLA-matched reduced intensity conditioning (RIC) AHCT. Results FL B cells from lymph nodes were FACS-sorted (>90% purity and > 95% light chain restriction), activated and used as stimulators in mixed lymphocyte reactions with purified allogeneic responder CD3+ T cells. HVEM expression on FL B cells from pts with biallelic TNFRSF14 aberrations (Mut/Del cases) was undetectable whereas 40% of FL B cells from TNFRSF14 WT cases expressed HVEM (Fig 1 A). In contrast, FL B cells from Mut/Del and WT cases expressed similar levels of MHC class I/II, CD80, CD86 and CD58 before and after activation. Allostimulation with Mut/Del FL B cells resulted in significantly greater expression of activation markers on responder CD4+ T cells, increased secretion of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-2) measured by ELISA and increased frequencies of cytokine-secreting CD4+ and CD8+ T cells enumerated by intracellular cytokine staining. Responder T cell proliferation by thymidine incorporation was significantly greater after stimulation with Mut/Del FL B cells compared to WT FL B cells. CFSE labeling studies demonstrated that this effect resulted from increased proliferation of CD4+ and CD8+ responder T cells after both primary (Fig 1B) and secondary allostimulation. To determine if the increased alloresponses we observed using FL B cells from TNFRSF14 Mut/Del cases was due to reduced HVEM-BTLA signaling, we performed allogeneic co-cultures in the presence of antagonist or agonist BTLA antibodies (ab). Antagonist anti-BTLA ab increased proliferation of responder T cells after stimulation with WT FL B cells confirming that BTLA limits alloresponses in our in vitro model. Importantly, agonist BTLA ab reduced alloresponses stimulated by Mut/Del FL B cells. We next sought to determine if the increased alloresponses we detected in vitro in FL pts with TNFRSF14 aberrations resulted in an increase in clinical alloreactivity after AHCT. DNA from lymph nodes from FL pts undergoing T-cell replete RIC AHSCT was screened for TNFRSF14 mutations and deletions by Sanger sequencing and multiplex ligation-probe amplification respectively. Cumulative incidences (CI) of aGvHD and GvHD-related death were calculated with FL progression as a competing risk. TNFRSF14 aberrations were identified in 10/21 pts prior to RIC AHCT (4 Mut/Del, 1 Del/Del, 1 Mut/WT, 4 Del/WT). Most (18/21) pts had evidence of ongoing FL pre-transplant. Disease and donor characteristics were similar in pts with and without aberrations. There was no significant difference in CI of aGvHD in pts with or without TNFRSF14 aberrations. However there was a significantly higher CI of fatal aGvHD in patients with TNFRSF14 aberrations (45%) compared to those without aberrations (0%, p<0.01). Interestingly, relapse was less frequent in patients with TNFRSF14 aberrations consistent with increased graft-versus-tumor effects, although this did not reach statistical significance. Conclusion This study is the first to describe the impact of TNFRSF14 aberrations on the allostimulatory capacity of FL B cells. TNFRSF14 aberrations were associated with enhanced T-cell alloresponses in vitro and increased death from aGvHD. Importantly, our results suggest FL patients with TNFRSF14 aberrations may benefit from more aggressive immunosuppression to prevent fatal aGvHD after AHCT. The increased antigen-presenting capacity of FL B cells with TNFRSF14 aberrations could also influence autologous anti-tumor responses and impact outcome after other treatment modalities. Figure 1 Figure 1. Disclosures Gribben: Celgene: Research Funding; Pharmacyclics: Honoraria; Roche: Honoraria.


2003 ◽  
Vol 77 (20) ◽  
pp. 10900-10909 ◽  
Author(s):  
Christiana Iyasere ◽  
John C. Tilton ◽  
Alison J. Johnson ◽  
Souheil Younes ◽  
Bader Yassine-Diab ◽  
...  

ABSTRACT Virus-specific CD4+ T-cell function is thought to play a central role in induction and maintenance of effective CD8+ T-cell responses in experimental animals or humans. However, the reasons that diminished proliferation of human immunodeficiency virus (HIV)-specific CD4+ T cells is observed in the majority of infected patients and the role of these diminished responses in the loss of control of replication during the chronic phase of HIV infection remain incompletely understood. In a cohort of 15 patients that were selected for particularly strong HIV-specific CD4+ T-cell responses, the effects of viremia on these responses were explored. Restriction of HIV replication was not observed during one to eight interruptions of antiretroviral therapy in the majority of patients (12 of 15). In each case, proliferative responses to HIV antigens were rapidly inhibited during viremia. The frequencies of cells that produce IFN-γ in response to Gag, Pol, and Nef peptide pools were maintained during an interruption of therapy. In a subset of patients with elevated frequencies of interleukin-2 (IL-2)-producing cells, IL-2 production in response to HIV antigens was diminished during viremia. Addition of exogenous IL-2 was sufficient to rescue in vitro proliferation of DR0101 class II Gag or Pol tetramer+ or total-Gag-specific CD4+ T cells. These observations suggest that, during viremia, diminished in vitro proliferation of HIV-specific CD4+ T cells is likely related to diminished IL-2 production. These results also suggest that relatively high frequencies of HIV-specific CD4+ T cells persist in the peripheral blood during viremia, are not replicatively senescent, and proliferate when IL-2 is provided exogenously.


1999 ◽  
Vol 67 (7) ◽  
pp. 3334-3338 ◽  
Author(s):  
Amanda E. Millar ◽  
Jerry Sternberg ◽  
Charlie McSharry ◽  
Xiao-Qing Wei ◽  
F. Y. Liew ◽  
...  

ABSTRACT We have investigated the possibility that nitric oxide (NO) synthesis may affect the course of a trypanosome infection via T-cell responses using mice deficient in inducible NO synthase (iNOS). Parasitemia levels increased at the same rate in both iNOS-deficient homozygous and control heterozygous mice, and peak parasitemia values were the same in both groups. However, the heterozygous mice maintained higher parasitemia levels after the peak of an infection than the homozygous mice due to a decrease in the rate of clearance of parasites. In iNOS-deficient mice there was an increase in the numbers of total CD4+ cells and activated (interleukin-2 receptor-expressing) CD4+ cells in infected mice compared with the numbers in uninfected mice. Spleen cells from infected iNOS-deficient mice displayed increased proliferative responses and gamma interferon secretion when stimulated in vitro than those of control mice. These data suggest that NO production depresses T-helper 1-like responses generated during Trypanosoma brucei infections, thus promoting the survival of the parasite.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sara Ness ◽  
Shiming Lin ◽  
John R. Gordon

Dendritic cells (DC) are antigen-presenting cells that can communicate with T cells both directly and indirectly, regulating our adaptive immune responses against environmental and self-antigens. Under some microenvironmental conditions DC develop into anti-inflammatory cells which can induce immunologic tolerance. A substantial body of literature has confirmed that in such settings regulatory DC (DCreg) induce T cell tolerance by suppression of effector T cells as well as by induction of regulatory T cells (Treg). Many in vitro studies have been undertaken with human DCreg which, as a surrogate marker of antigen-specific tolerogenic potential, only poorly activate allogeneic T cell responses. Fewer studies have addressed the abilities of, or mechanisms by which these human DCreg suppress autologous effector T cell responses and induce infectious tolerance-promoting Treg responses. Moreover, the agents and properties that render DC as tolerogenic are many and varied, as are the cells’ relative regulatory activities and mechanisms of action. Herein we review the most current human and, where gaps exist, murine DCreg literature that addresses the cellular and molecular biology of these cells. We also address the clinical relevance of human DCreg, highlighting the outcomes of pre-clinical mouse and non-human primate studies and early phase clinical trials that have been undertaken, as well as the impact of innate immune receptors and symbiotic microbial signaling on the immunobiology of DCreg.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mauro Di Pilato ◽  
Miguel Palomino-Segura ◽  
Ernesto Mejías-Pérez ◽  
Carmen E. Gómez ◽  
Andrea Rubio-Ponce ◽  
...  

AbstractNeutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.


Sign in / Sign up

Export Citation Format

Share Document