scholarly journals RNAseq reveals extensive metabolic disruptions in the sensitive SF-295 cell line treated with schweinfurthins

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
J. S. Weissenrieder ◽  
J. D. Weissenkampen ◽  
J. L. Reed ◽  
M. V. Green ◽  
C. Zheng ◽  
...  

AbstractThe schweinfurthin family of natural compounds exhibit a unique and potent differential cytotoxicity against a number of cancer cell lines and may reduce tumor growth in vivo. In some cell lines, such as SF-295 glioma cells, schweinfurthins elicit cytotoxicity at nanomolar concentrations. However, other cell lines, like A549 lung cancer cells, are resistant to schweinfurthin treatment up to micromolar concentrations. At this time, the precise mechanism of action and target for these compounds is unknown. Here, we employ RNA sequencing of cells treated with 50 nM schweinfurthin analog TTI-3066 for 6 and 24 h to elucidate potential mechanisms and pathways which may contribute to schweinfurthin sensitivity and resistance. The data was analyzed via an interaction model to observe differential behaviors between sensitive SF-295 and resistant A549 cell lines. We show that metabolic and stress-response pathways were differentially regulated in the sensitive SF-295 cell line as compared with the resistant A549 cell line. In contrast, A549 cell had significant alterations in response genes involved in translation and protein metabolism. Overall, there was a significant interaction effect for translational proteins, RNA metabolism, protein metabolism, and metabolic genes. Members of the Hedgehog pathway were differentially regulated in the resistant A549 cell line at both early and late time points, suggesting a potential mechanism of resistance. Indeed, when cotreated with the Smoothened inhibitor cyclopamine, A549 cells became more sensitive to schweinfurthin treatment. This study therefore identifies a key interplay with the Hedgehog pathway that modulates sensitivity to the schweinfurthin class of compounds.

2020 ◽  
Author(s):  
Meiling Gong ◽  
Yan Li ◽  
Xiao-Ping Ye ◽  
Linlin Zhang ◽  
Zhifang Wang ◽  
...  

Abstract Background and Purpose: Targeted therapy and immunotherapy have led to dramatic change in the treatment of lung cancer, however, the overall 5-year survival rate of lung cancer patients is still suboptimal. It is important to exploit new potential of molecularly targeted therapies. High-frequency somatic mutations in KEAP1/NRF2 (27.9%) have been identified in lung squamous cell carcinoma. In this research, we explored the role of KEAP1 somatic mutations in the development of LSCC and whether a nuclear factor erythroid 2-related factor 2(NRF2) inhibitor be potential to targetlung cancer carrying KEAP1/NRF2 mutations. Methods: Lung cancer cell lines A549 and H460 with loss-of-function mutations in KEAP1 stably transfected with wild-type (WT) KEAP1 or somatic mutations in KEAP1 were used to investigate the functions of somatic mutations in KEAP1 . Flow cytometry, plate clone formation experiments, and scratch tests were used to examine reactive oxygen species, proliferation, and migration of these cell lines. Results: The expression of NRF2 and its target genes increased , and tumor cell proliferation, migration, and tumor growth were accelerated in A549 and H460 cells stably transfected with KEAP1 mutants compared to control cells with a loss-of-function KEAP1 mutation and stably transfected with WT KEAP1 in both in vitro and in vivo studies. The proliferation of A549 cell line trasfected with the R320Q KEAP1 mutant was Inhibited more apparent than that of the A549 cell line trasfected with WT KEAP1 after treatment with NRF2 inhibitor ML385. Conclusion : Somatic mutations of KEAP1 identified from patients with LSCC likely promote tumorigenesis mediated by activation of the KEAP1/NRF2 antioxidant stress response pathway. NRF2 inhibition with ML385 could inhibit the proliferation of tumor cells with KEAP1 mutation.


2006 ◽  
Vol 105 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Lei Zhang ◽  
Eiji Sato ◽  
Kenichi Amagasaki ◽  
Atsuhito Nakao ◽  
Hirofumi Naganuma

Object Malignant glioma cells secrete and activate transforming growth factor–β (TGFβ) and are resistant to growth inhibition by that factor. Nevertheless, the mechanism underlying this effect remains poorly understood. In this study, the mechanism of the resistance to growth inhibition induced by TGFβ was investigated. Methods The authors examined the expression of downstream components of the TGFβ receptor, including Smad2, Smad3, Smad4, and Smad7, and the effect of TGFβ1 treatment on the phosphorylation of Smad2 and the nuclear translocation of Smad2 and Smad3 by using 10 glioma cell lines and the A549 cell line, which is sensitive to TGFβ-mediated growth inhibition. The expression of two transcriptional corepressor proteins, SnoN and Ski, and the effect of TGFβ1 treatment on the expression of the SnoN protein and the cell cycle regulators p21, p15, cyclin-dependent kinase–4 (CDK4), and cyclin D1 were also examined. Expression of the Smad2 and Smad3 proteins was lower in the glioma cell lines than in the A549 cell line and in normal astrocytes. In particular, Smad3 expression was low or very low in nine of the 10 malignant glioma cell lines. Expression of Smad4 was low in four glioma cell lines, and expression of the Smad7 protein was similar when compared with protein expression in the A549 cell line and in normal astrocytes. The levels of Smad2 phosphorylation after TGFβ1 treatment were lower in glioma cell lines than in the A549 cell line, except for one glioma cell line. Seven of the 10 glioma cell lines exhibited lower levels of nuclear translocation of Smad2 and Smad3, and two cell lines that expressed very low levels of Smad3 protein showed no nuclear translocation. All glioma cell lines expressed the SnoN protein and its expression was unaltered by treatment with TGFβ1. Three glioma cell lines expressed high levels of the Ski protein. The expression of the p21cip1, p15INK4B, CDK4, and cyclin D1 proteins was not altered by TGFβ1 treatment, except in one cell line that displayed a slight increase in p21 protein. Overall, the expression of the Smad2 and Smad3 proteins was low in the glioma cell lines, the phosphorylation and nuclear translocation of Smad2 and Smad3 were impaired, and the TGFβ receptor signal did not affect the expression of the SnoN, p21, p15, cyclin D1, and CDK4 proteins. Conclusions These results suggest that the ability to resist TGFβ-mediated growth inhibition in malignant glioma cells is due to abnormalities in the TGFβ signaling pathway.


2020 ◽  
Vol 11 (11) ◽  
pp. 260-268
Author(s):  
Lalitha G. ◽  
Nazeema TH

Our study examined for the inhibitory effect of ethanolic extract of Eleagnus Conferta Roxb leaves on TNF –α induced NF- kB nuclear translocation in lung cancer A549 cell line using flow cytometry. Apoptosis also studied to know about the antiproliferative and anticancer effects. However, our results revealed in apoptosis, Elaeagnus conferta Roxb leaves showed (33.54%) increased in proportion of cells. In the study of pre-treatment of A549 cells with Elaeagnus conferta Roxb leaves followed by TNF- α caused the increased proportion of cells (20.78%) at apoptosis induced cell death, which was statistically significant (p< 0.001). The untreated A549 cells had minimal NF-kB expression (0.25± 0.01%). However, the approach of A549 cells with Elaeagnus conferta Roxb had induced NF-kB production many fold (11.50± 1.05%). Therefore, we conclude our study was proved the impact of Elaeagnus conferta Roxb leaves inhibit the cellular growth of NSCLC-A549 cell line and induces apoptosis. Hence, from our findings, we proved this plant has anticancer activity, further feasibly taken for drug formulation.


2019 ◽  
Author(s):  
Maxim E Kukushkin ◽  
Dmitriy A Skvortsov ◽  
Marina A Kalinina ◽  
Viktor A Tafeenko ◽  
Vladimir V Burmistrov ◽  
...  

An effective and highly regio- and diastereoselective one-pot synthesis of two type of dispiro heterocyclic systems (2-thioxodispiro[imidazolidine-4,3'-pyrrolidine-2',3''-indoline]-2'',5-diones and 2-thioxodispiro[imidazolidine-4,3'-pyrrolidine-4',3''-indoline]-2'',5-diones) comprising pyrrolidinyloxindole, thiohydantoin and adamantane moieties have been developed based on a 1,3-dipolar cycloaddition of azomethine ylides, generated from isatin and sarcosine or formaldehyde and sarcosine, to adamantine-containing electron-deficient alkenes. Several molecules have demonstrated a considerable cytotoxicity against and A549, HEK293T, MCF7 and VA13 cancer cell lines. The possible mechanism of anticancer activity of synthesised compounds based on literature data may be the inhibition of p53/MDM2 interaction, however, we did not observe significant p53 activation using a reporter construction in A549 cell line in a relevant concentration range.


2020 ◽  
Vol 17 ◽  
Author(s):  
Tarek Faris ◽  
Gamaleldin I. Harisa ◽  
Fars K. Alanazi ◽  
Mohamed M. Badran ◽  
Afraa Mohammad Alotaibi ◽  
...  

Aim: This study aimed to explore an affordable technique for the fabrication of Chitosan Nanoshuttles (CSNS) at the ultrafine nanoscale less than 100 nm with improved physicochemical properties, and cytotoxicity on the MCF-7 cell line. Background: Despite several studies reported that the antitumor effect of CS and CSNS could achieve intracellular compartment target ability, no enough available about this issue and further studies are required to address this assumption. Objectives: The objective of the current study was to investigate the potential processing variables for the production of ultrafine CSNS (> 100 nm) using Box-Benhken Design factorial design (BBD). This was achieved through a study of the effects of processing factors, such as CS concentration, CS/TPP ratio, and pH of the CS solution, on PS, PDI, and ZP. Moreover, the obtained CSNS was evaluated for physicochemical characteristics, morphology Also, hemocompatibility, and cytotoxicity using Red Blood Cells (RBCs) and MCF-7 cell lines were investigated. Methods: Box-Benhken Design factorial design (BBD) was used in the analysis of different selected variables. The effects of CS concentration, sodium tripolyphosphate (TPP) ratio, and pH on particle size, Polydispersity Index (PDI), and Zeta Potential (ZP) were measured. Subsequently, the prepared CS nanoshuttles were exposed to stability studies, physicochemical characterization, hemocompatibility, and cytotoxicity using red blood cells and MCF-7 cell lines as surrogate models for in vivo study. Result: The present results revealed that the optimized CSNS have ultrafine nanosize, (78.3±0.22 nm), homogenous with PDI (0.131±0.11), and ZP (31.9±0.25 mV). Moreover, CSNS have a spherical shape, amorphous in structure, and physically stable. Also, CSNS has biological safety as indicated by a gentle effect on red blood cell hemolysis, besides, the obtained nanoshuttles decrease MCF-7 viability. Conclusion: The present findings concluded that the developed ultrafine CSNS has unique properties with enhanced cytotoxicity. thus promising for use in intracellular organelles drug delivery.


Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2311-2320 ◽  
Author(s):  
FM Lemoine ◽  
S Dedhar ◽  
GM Lima ◽  
CJ Eaves

Abstract Marrow stromal elements produce as yet uncharacterized soluble growth factors that can stimulate the proliferation of murine pre-B cells, although close contact between these two cell types appears to ensure a better pre-B cell response. We have now shown that freshly isolated normal pre-B cells (ie, the B220+, surface mu- fraction of adult mouse bone marrow) adhere to fibronectin (FN) via an RGD cell-attachment site, as shown in a serum-free adherence assay, and they lose this functional ability on differentiation in vivo into B cells (ie, the B220+, surface mu+ fraction). Similarly, cells from an immortalized but stromal cell-dependent and nontumorigenic murine pre-B cell line originally derived from a Whitlock-Witte culture were also found to adhere to fibronectin (FN) via an RGD cell-attachment site. Moreover, in the presence of anti-FN receptor antibodies, the ability of this immortalized pre-B cell line to proliferate when co-cultured with a supportive stromal cell line (M2–10B4 cells) was markedly reduced (down to 30% of control). This suggests that pre-B cell attachment to FN on stromal cells may be an important component of the mechanism by which stromal cells stimulate normal pre-B cell proliferation and one that is no longer operative to control their more differentiated progeny. Two differently transformed pre-B cell lines, both of which are autocrine, stromal-independent, tumorigenic in vivo, and partially or completely differentiation-arrested at a very early stage of pre-B cell development, did not bind to FN. In addition, anti-FN receptor antibodies were much less effective in diminishing the ability of these tumorigenic pre-B cells to respond to M2–10B4 cell stimulation, which could still be demonstrated when the tumorigenic pre-B cells were co- cultured with M2–10B4 cells at a sufficiently low cell density. Analysis of cell surface molecules immunoprecipitated from both the nontumorigenic and tumorigenic pre-B cell lines by an anti-FN receptor antibody showed an increase in very late antigen (VLA) alpha chain(s) in both tumorigenic pre-B cell lines and a decrease in the beta 1 chain in one. Interestingly, all of the pre-B cell lines expressed similar amounts of messenger RNA for the beta 1 chain of the FN receptor. These results suggest that alteration of FN receptor expression on pre-B cells may represent a mechanism contributing to the outgrowth of leukemic pre-B cells with an autocrine phenotype and capable of stromal cell-independent, autonomous growth.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1183
Author(s):  
Cecilia Spedalieri ◽  
Gergo Péter Szekeres ◽  
Stephan Werner ◽  
Peter Guttmann ◽  
Janina Kneipp

Gold nanostars are a versatile plasmonic nanomaterial with many applications in bioanalysis. Their interactions with animal cells of three different cell lines are studied here at the molecular and ultrastructural level at an early stage of endolysosomal processing. Using the gold nanostars themselves as substrate for surface-enhanced Raman scattering, their protein corona and the molecules in the endolysosomal environment were characterized. Localization, morphology, and size of the nanostar aggregates in the endolysosomal compartment of the cells were probed by cryo soft-X-ray nanotomography. The processing of the nanostars by macrophages of cell line J774 differed greatly from that in the fibroblast cell line 3T3 and in the epithelial cell line HCT-116, and the structure and composition of the biomolecular corona was found to resemble that of spherical gold nanoparticles in the same cells. Data obtained with gold nanostars of varied morphology indicate that the biomolecular interactions at the surface in vivo are influenced by the spike length, with increased interaction with hydrophobic groups of proteins and lipids for longer spike lengths, and independent of the cell line. The results will support optimized nanostar synthesis and delivery for sensing, imaging, and theranostics.


2006 ◽  
Vol 838 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Toyofumi Nakanishi ◽  
Toru Takeuchi ◽  
Kazuhito Ueda ◽  
Hitoshi Murao ◽  
Akira Shimizu

Sign in / Sign up

Export Citation Format

Share Document