scholarly journals Thyroid hormones regulate cardiac repolarization and QT-interval related gene expression in hiPSC cardiomyocytes

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Alessandra Ulivieri ◽  
Luca Lavra ◽  
Fiorenza Magi ◽  
Alessandra Morgante ◽  
Leonardo Calò ◽  
...  

AbstractProlongation of cardiac repolarization (QT interval) represents a dangerous and potentially life-threatening electrical event affecting the heart. Thyroid hormones (THs) are critical for cardiac development and heart function. However, little is known about THs influence on ventricular repolarization and controversial effects on QT prolongation are reported. Human iPSC-derived cardiomyocytes (hiPSC-CMs) and multielectrode array (MEA) systems were used to investigate the influence of 3,3′,5-triiodo-l-Thyronine (T3) and 3,3′,5,5′-tetraiodo-l-Thyronine (T4) on corrected Field Potential Duration (FPDc), the in vitro analog of QT interval, and on local extracellular Action Potential Duration (APD). Treatment with high THs doses induces a significant prolongation of both FPDc and APD, with the strongest increase reached after 24 h exposure. Preincubation with reverse T3 (rT3), a specific antagonist for nuclear TH receptor binding, significantly reduces T3 effects on FPDc, suggesting a TRs-mediated transcriptional mechanism. RNA-seq analysis showed significant deregulation in genes involved in cardiac repolarization pathways, including several QT-interval related genes. In conclusion, long-time administration of high THs doses induces FPDc prolongation in hiPSC-CMs probably through the modulation of genes linked to QT-interval regulation. These results open the way to investigate new potential diagnostic biomarkers and specific targeted therapies for cardiac repolarization dysfunctions.

1997 ◽  
Vol 13 (3) ◽  
pp. 127-132 ◽  
Author(s):  
Thomas Yk Chan

Objective: To review the risk factors and mechanisms of terfenadine-induced torsade de pointes and to discuss how this adverse reaction might be avoided. Data Sources: Previous reports of terfenadine-induced torsade de pointes and studies of the underlying mechanisms were identified by a MEDLINE search or from the reference lists of pertinent articles. Study Selection and Data Extraction: All relevant articles were included in the review. Pertinent information was selected for discussion. Data Synthesis: Terfenadine is extensively (99%) metabolized by CYP3A4 to an active acid metabolite (terfenadine carboxylate), and with therapeutic dosages, unchanged terfenadine is usually undetectable in plasma. A review of all the reported cases of torsade de pointes indicated that most patients had one or more factors that would be expected to cause excessively high concentrations of unchanged terfenadine, such as overdose; use of supratherapeutic dosages; concurrent use of CYP3A4 inhibitors such as ketoconazole, itraconazole, erythromycin, and troleandomycin; and liver dysfunction. Many patients had one or more factors known to predispose to drug-induced torsade de pointes (e.g., preexisting prolonged QT interval, ischemic heart disease, hypokalemia). Pharmacokinetic studies in healthy volunteers have shown that ketoconazole, itraconazole, erythromycin, and clarithromycin can alter the metabolism of terfenadine and result in the accumulation of unchanged terfenadine, which is associated with significant prolongation of the QT interval. In vitro studies have shown that the proarrhythmic effects of terfenadine are secondary to the blockade of cardiac potassium channels. Terfenadine carboxylate does not have such an effect. Conclusions: Supratherapeutic dosages of terfenadine should never be used. The concurrent use of CYP3A4 inhibitors should be avoided. Terfenadine should be avoided in patients with liver dysfunction or factors known to predispose to drug-induced torsade de pointes.


1993 ◽  
Vol 69 (4) ◽  
pp. 1276-1291 ◽  
Author(s):  
D. A. Prince ◽  
G. F. Tseng

1. Field potentials and intracellular activities were examined in neocortical slices obtained through areas of chronic cortical injury produced by cortical undercutting and transcortical lesions made in vivo 7-122 days before the terminal in vitro slice experiment. 2. Abnormal field potentials characterized by long- and variable-latency multiphasic events could be evoked by layer VI-white matter or subpial stimulation in 9 of 15 animals that had adequate partial cortical isolations. These "epileptiform" field potentials were recorded in layers II-V and propagated across the cortex. They appeared at threshold in an all-or-none fashion and, in most slices, could be blocked by increasing stimulus intensity. In one slice, spontaneous epileptiform events occurred that were similar to those evoked by extracellular stimulation. 3. Intracellular activities during the epileptiform field potentials consisted of polyphasic synaptic events that were predominantly depolarizing and that could last < or = 400-500 ms, synchronous with the field potential activities. A variety of observations suggested that the neuronal activities underlying epileptiform field potentials were relatively asynchronous and much less intense than those previously found in chemically induced epileptogenesis within the neocortex. 4. Inhibitory postsynaptic potentials (IPSPs) were not prominent in neurons when threshold stimuli evoked epileptiform events; however, suprathreshold stimuli could elicit biphasic IPSPs and block the long-latency polysynaptic activity and abnormal field potential in most slices. Depolarizing components of the polysynaptic activity had the appearance of excitatory postsynaptic potentials in terms of their responses to alterations in membrane potential. 5. Comparison of spike parameters in layer V neurons of epileptogenic slices with those in control layer V neurons showed no significant differences in spike height, threshold, duration, or rise time. Resting membrane potentials were also not significantly different. 6. There was a highly significant difference in input resistance (RN) between layer V neurons in control and injured slices; the mean value for neurons in lesioned cortex was 68.1 M omega, whereas that in control cells was 30.5 M omega. There was also a significant prolongation of the slow membrane time constant in neurons of injured cortex (19.4 ms) as opposed to that in control cells (12.2 ms), suggesting that a change in specific resistivity or capacitance contributed to the higher RNS. 7. The relationship between adapted spike frequency and applied current (f-I slope) was steeper in layer V neurons from injured cortical slices (44.3 Hz/nA) than in normal layer V cells (28.2 Hz/nA).(ABSTRACT TRUNCATED AT 400 WORDS)


2017 ◽  
Vol 101 (6) ◽  
pp. 782-790 ◽  
Author(s):  
J Keirns ◽  
A Desai ◽  
D Kowalski ◽  
C Lademacher ◽  
S Mujais ◽  
...  

1995 ◽  
Vol 73 (02) ◽  
pp. 219-222 ◽  
Author(s):  
Manuel Monreal ◽  
Luis Monreal ◽  
Rafael Ruiz de Gopegui ◽  
Yvonne Espada ◽  
Ana Maria Angles ◽  
...  

SummaryThe APTT has been considered the most suitable candidate to monitor the anticoagulant activity of hirudin. However, its use is hampered by problems of standardization, which make the results heavily dependent on the responsiveness of the reagent used. Our aim was to investigate if this different responsiveness of different reagents when added in vitro is to be confirmed in an ex vivo study.Two different doses of r-hirudin (CGP 39393), 0.3 mg/kg and 1 mg/kg, were administered subcutaneously to 20 New Zealand male rabbits, and the differences in prolongation of APTT 2 and 12 h later were compared, using 8 widely used commercial reagents. All groups exhibited a significant prolongation of APTT 2 h after sc administration of hirudin, both at low and high doses. But this prolongation persisted 12 h later only when the PTTa reagent (Boehringer Mannheim) was used. In general, hirudin prolonged the APTT most with the silica- based reagents.In a further study, we compared the same APTT reagents in an in vitro study in which normal pooled plasma was mixed with increasing amount of hirudin. We failed to confirm a higher sensitivity for silica- containing reagents. Thus, we conclude that subcutaneous administration of hirudin prolongs the APTT most with the silica-based reagents, but this effect is exclusive for the ex vivo model.


2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


2018 ◽  
Vol 17 (6) ◽  
pp. 404-411 ◽  
Author(s):  
Syeda Mehpara Farhat ◽  
Touqeer Ahmed

Background: Aluminum (Al) causes neurodegeneration and its toxic effects on cholinergic system in the brain is well documented. However, it is unknown whether and how Al changes oscillation patterns, driven by the cholinergic system, in the hippocampus. Objective: We studied acute effects of Al on nicotinic acetylcholine receptors (nAChRs)-mediated modulation of persistent gamma oscillations in the hippocampus. Method: The field potential recording was done in CA3 area of acute hippocampal slices. Results: Carbachol-induced gamma oscillation peak power increased (1.32±0.09mV2/Hz, P<0.01) in control conditions (without Al) by application of 10µM nicotine as compared to baseline value normalized to 1. This nicotine-induced facilitation of gamma oscillation peak power was found to depend on non-α7 nAChRs. In slices with Al pre-incubation for three to four hours, gamma oscillation peak power was reduced (5.4±1.8mV2/Hz, P<0.05) and facilitatory effect of nicotine on gamma oscillation peak power was blocked as compared to the control (18.06±2.1mV2/Hz) or one hour Al pre-incubated slices (11.3±2.5mV2/Hz). Intriguingly wash-out, after three to four hours of Al incubation, failed to restore baseline oscillation power and its facilitation by nicotine as no difference was observed in gamma oscillation peak power between Al wash-out slices (3.4±1.1mV2/Hz) and slices without washout (3.6±0.9mV2/Hz). Conclusion: This study shows that at cellular level, exposure of hippocampal tissue to Al compromised nAChR-mediated facilitation of cholinergic hippocampal gamma oscillations. Longer in vitro Al exposure caused permanent changes in hippocampal oscillogenic circuitry and changed its sensitivity to nAChR-modulation. This study will help to understand the possible mechanism of cognitive decline induced by Al.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 386
Author(s):  
Ana Santos ◽  
Yongjun Jang ◽  
Inwoo Son ◽  
Jongseong Kim ◽  
Yongdoo Park

Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.


2021 ◽  
Vol 22 (7) ◽  
pp. 3616
Author(s):  
Ewelina Jozefczuk ◽  
Piotr Szczepaniak ◽  
Tomasz Jan Guzik ◽  
Mateusz Siedlinski

Sphingosine kinase-1 (Sphk1) and its product, sphingosine-1-phosphate (S1P) are important regulators of cardiac growth and function. Numerous studies have reported that Sphk1/S1P signaling is essential for embryonic cardiac development and promotes pathological cardiac hypertrophy in adulthood. However, no studies have addressed the role of Sphk1 in postnatal cardiomyocyte (CM) development so far. The present study aimed to assess the molecular mechanism(s) by which Sphk1 silencing might influence CMs development and hypertrophy in vitro. Neonatal mouse CMs were transfected with siRNA against Sphk1 or negative control, and subsequently treated with 1 µM angiotensin II (AngII) or a control buffer for 24 h. The results of RNASeq analysis revealed that diminished expression of Sphk1 significantly accelerated neonatal CM maturation by inhibiting cell proliferation and inducing developmental pathways in the stress (AngII-induced) conditions. Importantly, similar effects were observed in the control conditions. Enhanced maturation of Sphk1-lacking CMs was further confirmed by the upregulation of the physiological hypertrophy-related signaling pathway involving Akt and downstream glycogen synthase kinase 3 beta (Gsk3β) downregulation. In summary, we demonstrated that the Sphk1 silencing in neonatal mouse CMs facilitated their postnatal maturation in both physiological and stress conditions.


2021 ◽  
pp. 026988112110034
Author(s):  
Leif Hommers ◽  
Maike Scherf-Clavel ◽  
Roberta Stempel ◽  
Julian Roth ◽  
Matthias Falter ◽  
...  

Background: Drug-induced prolongation of cardiac repolarization limits the treatment with many psychotropic drugs. Recently, the contribution of polygenic variation to the individual duration of the QT interval was identified. Aims: To explore the interaction between antipsychotic drugs and the individual polygenic influence on the QT interval. Methods: Retrospective analysis of clinical and genotype data of 804 psychiatric inpatients diagnosed with a psychotic disorder. The individual polygenic influence on the QT interval was calculated according to the method of Arking et al. Results: Linear regression modelling showed a significant association of the individual polygenic QT interval score (ßstd = 0.176, p < 0.001) and age (ßstd = 0.139, p < 0.001) with the QTc interval corrected according to Fridericia’s formula. Sex showed a nominal trend towards significance (ßstd = 0.064, p = 0.064). No association was observed for the number of QT prolonging drugs according to AZCERT taken. Subsample analysis ( n = 588) showed a significant association of potassium serum concentrations with the QTc interval (ßstd = −0.104, p = 0.010). Haloperidol serum concentrations were associated with the QTc interval only in single medication analysis ( n = 26, ßstd = 0.101, p = 0.004), but not in multivariate regression analysis. No association was observed for aripiprazole, clozapine, quetiapine and perazine, while olanzapine and the sum of risperidone and its metabolite showed a negative association. Conclusions: Individual genetic factors and age are main determinants of the QT interval. Antipsychotic drug serum concentrations within the therapeutic range contribute to QTc prolongation on an individual level.


2021 ◽  
Vol 22 (3) ◽  
pp. 1455
Author(s):  
Varsha Garg ◽  
Aleksandra Hackel ◽  
Christina Kühn

In potato plants, the phloem-mobile miR172 is involved in the sugar-dependent transmission of flower and tuber inducing signal transduction pathways and a clear link between solute transport and the induction of flowering and tuberization was demonstrated. The sucrose transporter StSUT4 seems to play an important role in the photoperiod-dependent triggering of both developmental processes, flowering and tuberization, and the phenotype of StSUT4-inhibited potato plants is reminiscent to miR172 overexpressing plants. The first aim of this study was the determination of the level of miR172 in sink and source leaves of StSUT4-silenced as well as StSUT4-overexpressing plants in comparison to Solanum tuberosum ssp. Andigena wild type plants. The second aim was to investigate the effect of sugars on the level of miRNA172 in whole cut leaves, as well as in whole in vitro plantlets that were supplemented with exogenous sugars. Experiments clearly show a sucrose-dependent induction of the level of mature miR172 in short time as well as long time experiments. A sucrose-dependent accumulation of miR172 was also measured in mature leaves of StSUT4-silenced plants where sucrose export is delayed and sucrose accumulates at the end of the light period.


Sign in / Sign up

Export Citation Format

Share Document