scholarly journals High-temperature high-pressure microfluidic system for rapid screening of supercritical CO2 foaming agents

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ayrat Gizzatov ◽  
Scott Pierobon ◽  
Zuhair AlYousef ◽  
Guoqing Jian ◽  
Xingyu Fan ◽  
...  

AbstractCO2 foam helps to increase the viscosity of CO2 flood fluid and thus improve the process efficiency of the anthropogenic greenhouse gas’s subsurface utilization and sequestration. Successful CO2 foam formation mandates the development of high-performance chemicals at close to reservoir conditions, which in turn requires extensive laboratory tests and evaluations. This work demonstrates the utilization of a microfluidic reservoir analogue for rapid evaluation and screening of commercial surfactants (i.e., Cocamidopropyl Hydroxysultaine, Lauramidopropyl Betaine, Tallow Amine Ethoxylate, N,N,N′ Trimethyl-N′-Tallow-1,3-diaminopropane, and Sodium Alpha Olefin Sulfonate) based on their performance to produce supercritical CO2 foam at high salinity, temperature, and pressure conditions. The microfluidic analogue was designed to represent the pore sizes of the geologic reservoir rock and to operate at 100 °C and 13.8 MPa. Values of the pressure drop across the microfluidic analogue during flow of the CO2 foam through its pore network was used to evaluate the strength of the generated foam and utilized only milliliters of liquid. The transparent microfluidic pore network allows in-situ quantitative visualization of CO2 foam to calculate its half-life under static conditions while observing if there is any damage to the pore network due to precipitation and blockage. The microfluidic mobility reduction results agree with those of foam loop rheometer measurements, however, the microfluidic approach provided more accurate foam stability data to differentiate the foaming agent as compared with conventional balk testing. The results obtained here supports the utility of microfluidic systems for rapid screening of chemicals for carbon sequestration or enhanced oil recovery operations.

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 972 ◽  
Author(s):  
Amin Rezaei ◽  
Hadi Abdollahi ◽  
Zeinab Derikvand ◽  
Abdolhossein Hemmati-Sarapardeh ◽  
Amir Mosavi ◽  
...  

As a fixed reservoir rock property, pore throat size distribution (PSD) is known to affect the distribution of reservoir fluid saturation strongly. This study aims to investigate the relations between the PSD and the oil–water relative permeabilities of reservoir rock with a focus on the efficiency of surfactant–nanofluid flooding as an enhanced oil recovery (EOR) technique. For this purpose, mercury injection capillary pressure (MICP) tests were conducted on two core plugs with similar rock types (in respect to their flow zone index (FZI) values), which were selected among more than 20 core plugs, to examine the effectiveness of a surfactant–nanoparticle EOR method for reducing the amount of oil left behind after secondary core flooding experiments. Thus, interfacial tension (IFT) and contact angle measurements were carried out to determine the optimum concentrations of an anionic surfactant and silica nanoparticles (NPs) for core flooding experiments. Results of relative permeability tests showed that the PSDs could significantly affect the endpoints of the relative permeability curves, and a large amount of unswept oil could be recovered by flooding a mixture of the alpha olefin sulfonate (AOS) surfactant + silica NPs as an EOR solution. Results of core flooding tests indicated that the injection of AOS + NPs solution in tertiary mode could increase the post-water flooding oil recovery by up to 2.5% and 8.6% for the carbonate core plugs with homogeneous and heterogeneous PSDs, respectively.


2021 ◽  
Author(s):  
Céleste Odier ◽  
Margaux Kerdraon ◽  
Emie Lacombe ◽  
Eric Delamaide

Abstract In heavy oil reservoirs operated by steam injection, foam has a double benefit. By improving the steam sweep efficiency within the reservoir, foam increases oil recovery while reducing the amount of injected steam. However, in the field, this technology is not always very effective due to the fact that it is difficult to find foaming agents that can withstand temperatures above 200°C. Moreover, the agents that form stable foams at such temperatures are often insoluble at ambient temperature, and therefore difficult to solubilize in the field. Thus, a compromise between good solubility in surface conditions and high temperature foaming performances in the reservoir has to be found. In this study, we show that it is possible to boost chemicals that form foam at very high temperature with an additive to greatly improve their solubility at ambient temperature while maintaining their high foaming performance at high temperature. Two foaming agents of increasing degree of hydrophobicity (H and HH) were initially selected for this study. The first one shows high foaming performances in porous media and in a high-pressure cell at temperatures comprised in between 150 and 220°C. The second one, more hydrophobic, is particularly performant at temperatures comprised in between 220°C and at least 280°C. Using a robotic platform, the temperature at which the foaming solution for agents H and HH needs to be heated to be solubilized, was evaluated with an accuracy of 5°C in four brines (varying salinity and hardness). We found that the temperature at which both agents become soluble is above 60°C, still too high for a field application. In the second part of the study, these hydrophobic molecules were coupled to a pre-selected additive. The resulting mixtures were again qualified in terms of solubility and foaming performances. We show that by coupling these hydrophobic agents with an additive, we are able to maintain their excellent foaming performances while decreasing their solubilisation temperature down to room temperature. To the best of our knowledge, this is the first time that very high temperature foam stability assessment up to 280°C is combined to solubility measurements to design performant foaming solutions that will be easy to handle in the field for steam foam applications. Interestingly, we show that the hydrophobicity of agents that is required for high temperature foam generation can be balanced by a more hydrophilic agent without reducing their foaming performances.


2007 ◽  
Vol 10 (06) ◽  
pp. 597-608 ◽  
Author(s):  
Liping Jia ◽  
Cynthia Marie Ross ◽  
Anthony Robert Kovscek

Summary A 3D pore-network model of two-phase flow was developed to compute permeability, relative permeability, and capillary pressure curves from pore-type, -size, and -shape information measured by means of high-resolution image analysis of diatomaceous-reservoir-rock samples. The diatomite model is constructed using pore-type proportions obtained from image analysis of epoxy-impregnated polished samples and mercury-injection capillary pressure curves for diatomite cores. Multiple pore types are measured, and each pore type has a unique pore-size and throat-size distribution that is incorporated in the model. Network results present acceptable agreement when compared to experimental measurements of relative permeability. The pore-network model is applicable to both drainage and imbibition within diatomaceous reservoir rock. Correlation of network-model results to well log data is discussed, thereby interpolating limited experimental results across the entire reservoir column. Importantly, our method has potential to predict the petrophysical properties for reservoir rocks with either limited core material or those for which conventional experimental measurements are difficult, unsuitable, or expensive. Introduction Model generation for reservoir simulation requires accurate entering of physical properties such as porosity, permeability, initial water saturation, residual-oil saturation, capillary pressure functions, and relative permeability curves. These functions and parameters are necessary to estimate production rate and ultimate oil recovery, and thereby optimize reservoir development. Accurate measurement and representation of such information is, therefore, essential for reservoir modeling. Relative permeability and capillary pressure curves are the most important constitutive relations to represent multiphase flow. Often, it is difficult to sample experimentally the range of relevant multiphase-flow behavior of a reservoir. In addition to the availability of rock samples, measurements are frequently time consuming to conduct, and conventional techniques are not suitable for all rock types (Schembre and Kovscek 2003). It is impossible, therefore, to measure all the unique relative permeability functions of different reservoir-rock types and variations within a rock type. This lack of constitutive information limits the accuracy of reservoir simulators to predict oil recovery. Simply put, other available data must be queried for their relevance to multiphase flow and must be used to interpret the available relative permeability and capillary pressure information.


Author(s):  
Muhammad Khan Memon ◽  
Ubedullah Ansari ◽  
Habib U Zaman Memon

The residual oil after primary or secondary oil recovery can be recovered by the methods of EOR (Enhanced Oil Recovery). The objective of this study is screening the surfactants that generate maximum stable foam in the presence of brine salinity at 92oC. Laboratory experiments have been performed to examine and compare the stability of generated foam by individual and blended surfactants in the synthetic brine water. AOS C14-16 (Alpha Olefin Sulfonate) and SDS (Sodium Dodecyl Sulfonate) were selected as main surfactants. Aqueous stability test of AOS C14-16 and SDS with brine water salinity 62070ppm was performed at 92oC. AAS (Alcohol Alkoxy Sulfate) was blended with SDS and AOS C14-16. The solution was stable in the presence of brine salinity at same conditions. Salt tolerance experimental study revealed that AOS C14-16 did not produce precipitates at 92oC. Further, the foam stability of surfactant blend was performed. Result shows that, the maximum life time of generated foam was observed by using blend of 0.2wt% SDS+0.2wt% AOS+0.2wt% AS-1246 and 0.2wt% AOS+0.2wt% IOSC15-18+0.2wt% AAS surfactants as compared to the foam generated by individual surfactants. The success of generated foam by these surfactant solutions in the presence of brine water is the primary screening of surfactant stability and foamability for EOR applications in reservoirs type of reservoirs.


Author(s):  
Albert Barrabino ◽  
Torleif Holt ◽  
Erik Lindeberg

Graphene oxide (GO), nanographene oxide (nGO) and partially reduced graphene oxide (rGO) have been studied as possible foam stabilizing agents for CO2 based enhanced oil recovery (EOR). GO was able to stabilize CO2/synthetic sea water foams. rGO was not able to stabilize foams likely due to the high reduction degree of the material. Particle size had a strong influence on foamability and stability. GO hydrophilicity increased as the particle size decreased and no foams were created when particle size was below 1 µm (nGO). GO brine dispersions showed immediate gel formation, which improved foam stability. Particle growth due to layer stacking was also observed. This mechanism was detrimental for foam formation and stabilization. nGO dispersed in synthetic sea water rapidly formed hydrogels and was not filterable. This work indicates that the particles studied are not suitable for CO2 EOR purposes.


2021 ◽  
Vol 5 (3) ◽  
pp. 1-10
Author(s):  
Rao DN

The presence of oil films in three phase flow of oil, water and gas through reservoir rocks has a significant effect on the recovery efficiency associated with various Enhanced Oil Recovery (EOR) processes like Water Alternating Gas (WAG) and Gas-Assisted Graviry Drainage (GAGD). Visualization of these oil films helps in having a better understanding of the conditions required for the formation of such films in a rock pore network. In this work, we have used a microfluidic platform consisting of Norland Optic Adhesives-81(NOA81) that better mimics the reservoir rock pore geometry, to visualize the oil films in different spreading systems. NOA81 is a transparent polymer with high chemical and physical resistance, which enabled the device to withstand harsh organic solvents as well as high pressures and temperatures encountered in the EOR experiments. This device was designed with pore network similar to that of a consolidated water wet porous rock with varying channel widths and taper, unlike various other platforms using regular square or constant channel width grids. This modification resulted in a more realistic representation of the actual pore network of reservoir rocks. Continuous thinner oil films were observed in the positive spreading system, whereas discontinuous trapped oil blobs were encountered in the negative spreading system. Statistical analysis carried out on the thickness of the oil phase separating water and gas phases indicated significant differences and confirmed the visual observations.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1163 ◽  
Author(s):  
Muhammad Kamal

Selection of surfactants for enhanced oil recovery and other upstream applications is a challenging task. For enhanced oil recovery applications, a surfactant should be thermally stable, compatible with reservoir brine, and have lower adsorption on reservoir rock, have high foamability and foam stability, and should be economically viable. Foam improves the oil recovery by increasing the viscosity of the displacing fluid and by reducing the capillary forces due to a reduction in interfacial tension. In this work, foamability and foam stability of two different surfactants were evaluated using a dynamic foam analyzer. These surfactants were fluorinated zwitterionic, and hydrocarbon zwitterionic surfactants. The effect of various parameters such as surfactant type and structure, temperature, salinity, and type of injected gas was investigated on foamability and foam stability. The foamability was assessed using the volume of foam produced by injecting a constant volume of gas and foam stability was determined by half-life time. The maximum foam generation was obtained using hydrocarbon zwitterionic surfactant. However, the foam generated using fluorinated zwitterionic surfactant was more stable. A mixture of zwitterionic fluorinated and hydrocarbon fluorinated surfactant showed better foam generation and foam stability. The foam generated using CO2 has less stability compared to the foam generated using air injection. Presence of salts increases the foam stability and foam generation. At high temperature, the foamability of the surfactants increased. However, the foam stability was reduced at high temperature for all type of surfactants. This study helps in optimizing the surfactant formulations consisting of a fluorinated and hydrocarbon zwitterionic surfactant for foam injections.


2021 ◽  
Vol 56 (6) ◽  
pp. 962-970
Author(s):  
Ishaq Ahmad ◽  
Liu Chengwen ◽  
Wu Mingxuan ◽  
Xu Zhengxiao ◽  
Atif Zafar ◽  
...  

2021 ◽  
Author(s):  
Tinuola Udoh

Abstract In this paper, the enhanced oil recovery potential of the application of nanoparticles in Niger Delta water-wet reservoir rock was investigated. Core flooding experiments were conducted on the sandstone core samples at 25 °C with the applications of nanoparticles in secondary and tertiary injection modes. The oil production during flooding was used to evaluate the enhanced oil recovery potential of the nanoparticles in the reservoir rock. The results of the study showed that the application of nanoparticles in tertiary mode after the secondary formation brine flooding increased oil production by 16.19% OIIP. Also, a comparison between the oil recoveries from secondary formation brine and nanoparticles flooding showed that higher oil recovery of 81% OIIP was made with secondary nanoparticles flooding against 57% OIIP made with formation brine flooding. Finally, better oil recovery of 7.67% OIIP was achieved with secondary application of nanoparticles relative to the tertiary application of formation brine and nanoparticles flooding. The results of this study are significant for the design of the application of nanoparticles in Niger Delta reservoirs.


2021 ◽  
Vol 73 (09) ◽  
pp. 62-63
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201586, “Effect of Silica Nanoparticles on Oil Recovery During Alternating Injection With Low-Salinity Water and Surfactant Into Carbonate Reservoirs,” by Saheed Olawale Olayiwola, SPE, and Morteza Dejam, SPE, University of Wyoming, prepared for the 2020 SPE Annual Technical Conference and Exhibition, originally scheduled to be held in Denver, Colorado, 5–7 October. The paper has not been peer reviewed. Although the potential of nanoparticles (NPs) to improve oil recovery is promising, their effect during alternating injection is still uncertain. The main objective of the authors’ study is to investigate the best recovery mechanisms during alternating injection of NPs, low-salinity water (LSW), and surfactant and transform the results into field-scale technology. The outcome of these experiments revealed that tertiary injection of NPs results in additional oil recovery beyond the limits of LSW. Introduction A series of coreflooding experiments was conducted using several cores with an effective permeability of approximately 1 md to the brine at a temperature and pressure of 70°C and 3,000 psi. The study performs four different alternating injections of NPs with LSW and surfactant to determine optimal oil recovery. The wettability of the rock and fluid and the interfacial tension (IFT) of oil and water are measured to understand the mechanisms of interactions between the fluids and the reservoir rock. Materials A 12×12×12-in. block taken from an outcrop of Indiana limestone reservoir was purchased for this study. Four core plugs with a diameter of 1.5 in., used for the coreflooding experiments, were selected from this block. A synthetic 100,000-ppm (10 wt%) brine was prepared in the laboratory by dissolving sodium chloride (NaCl) and calcium chloride with a ratio of 4:1 in deionized water. The crude oil used in this study was a volatile oil (properties are described in Table 2 of the complete paper) obtained from the Permian Basin in Texas. Injected Fluids. A 10,000-ppm (1 wt%) LSW was prepared by diluting the synthetic brine 10 times. The surfactant solutions were prepared from an anionic sodium dodecyl sulfate (SDS) surfactant. A 1,000-ppm (0.1 wt%) surfactant solution used throughout the experiments was selected on the basis of the estimated critical micelle concentration of 600 to 2,240 ppm for SDS and nanofluid/NaCl. The concentration of silica NPs used in this study was 500 ppm (0.05 wt%). The nanofluids were pre-pared either as a simple solution or as a mixture with other chemicals to make a concentration of 500-ppm silica NPs. Coreflooding System. The established coreflooding system used for this experimental study was custom-made to determine the oil recovery and the relative permeabilities at steady-state and unsteady-state flows. However, the focus of this study is to investigate the effect of silica NPs on oil recovery. The schematic diagram of the coreflooding system is shown in Fig. 1.


Sign in / Sign up

Export Citation Format

Share Document