scholarly journals Accurate prediction of birth implementing a statistical model through the determination of steroid hormones in saliva

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Silvia Alonso ◽  
Sara Cáceres ◽  
Daniel Vélez ◽  
Luis Sanz ◽  
Gema Silvan ◽  
...  

AbstractSteroidal hormone interaction in pregnancy is crucial for adequate fetal evolution and preparation for childbirth and extrauterine life. Estrone sulphate, estriol, progesterone and cortisol play important roles in the initiation of labour mechanism at the start of contractions and cervical effacement. However, their interaction remains uncertain. Although several studies regarding the hormonal mechanism of labour have been reported, the prediction of date of birth remains a challenge. In this study, we present for the first time machine learning algorithms for the prediction of whether spontaneous labour will occur from week 37 onwards. Estrone sulphate, estriol, progesterone and cortisol were analysed in saliva samples collected from 106 pregnant women since week 34 by enzyme-immunoassay (EIA) techniques. We compared a random forest model with a traditional logistic regression over a dataset constructed with the values observed of these measures. We observed that the results, evaluated in terms of accuracy and area under the curve (AUC) metrics, are sensibly better in the random forest model. For this reason, we consider that machine learning methods contribute in an important way to the obstetric practice.

2019 ◽  
Author(s):  
Ruilin Li ◽  
Xinyin Han ◽  
Liping Sun ◽  
Yannan Feng ◽  
Xiaolin Sun ◽  
...  

AbstractPrecisely predicting the required pre-surgery blood volume (PBV) in surgical patients is a formidable challenge in China. Inaccurate estimation is associate with excessive costs, postponed surgeries and adverse outcome after surgery due to in sufficient supply or inventory. This study aimed to predict required PBV based on machine learning techniques. 181,027 medical documents over 6 years were cleaned and finally obtained 92,057 blood transfusion records. The blood transfusion and surgery related factors of perioperative patients, surgeons experience volumes and the actual volumes of transfused RBCs were extracted. 6 machine learning algorithms were used to build prediction models. The surgery patients received allogenic RBCs or without transfusion, had total volume less than 10 units, or had the latest laboratory examinations of pre-surgery within 7 days were included, providing 118,823 data points. 39 predictive factors related to the RBCs transfusion were identified. Random forest model was selected to predict the required PBV of RBCs with 72.9% accuracy and strikingly improved the accuracy by 30.4% compared with surgeons experience, where 90% of data was used for training. We tested and demonstrated that both the data-driven models and the random forest model achieved higher accuracy than surgeons experience. Furthermore, we developed a computational tool, PTRBC, to precisely estimate the required PBV in surgical patients and we believe this tool will find more applications in assisting clinician decisions, not only confined to making accurate pre-surgery blood requirement predicting.


2017 ◽  
Vol 41 (S1) ◽  
pp. S95-S96 ◽  
Author(s):  
V. De Luc ◽  
A. Bani Fatemi ◽  
N. Hettige

ObjectiveSuicide is a major concern for those afflicted by schizophrenia. Identifying patients at the highest risk for future suicide attempts remains a complex problem for psychiatric intervention. Machine learning models allow for the integration of many risk factors in order to build an algorithm that predicts which patients are likely to attempt suicide. Currently, it is unclear how to integrate previously identified risk factors into a clinically relevant predictive tool to estimate the probability of a patient with schizophrenia for attempting suicide.MethodsWe conducted a cross-sectional assessment on a sample of 345 participants diagnosed with schizophrenia spectrum disorders. Suicide attempters and non-attempters were clearly identified using the Columbia Suicide Severity Rating Scale (C-SSRS) and the Beck Suicide Ideation Scale (BSS). We developed two classification algorithms using a regularized regression and random forest model with sociocultural and clinical variables as features to train the models.ResultsBoth classification models performed similarly in identifying suicide attempters and non-attempters. Our regularized logistic regression model demonstrated an accuracy of 66% and an area under the curve (AUC) of 0.71, while the random forest model demonstrated 65% accuracy and an AUC of 0.67.ConclusionMachine learning algorithms offer a relatively successful method for incorporating many clinical features to predict individuals at risk for future suicide attempts. Increased performance of these models using clinically relevant variables offers the potential to facilitate early treatment and intervention to prevent future suicide attempts.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2021 ◽  
Vol 13 (17) ◽  
pp. 3404
Author(s):  
Rong Tang ◽  
Yuting Zhao ◽  
Huilong Lin

Accurate estimation of the aboveground biomass (AGB) of grassland is a key link in understanding the regional carbon cycle. We used 501 aboveground measurements, 29 environmental variables, and machine learning algorithms to construct and verify a custom model of grassland biomass in the Headwater of the Yellow River (HYR) and selected the random forest model to analyze the temporal and spatial distribution characteristics and dynamic trends of the biomass in the HYR from 2001 to 2020. The research results show that: (1) the random forest model is superior to the other three models (R2val = 0.56, RMSEval = 51.3 g/m2); (2) the aboveground biomass in the HYR decreases spatially from southeast to northwest, and the annual average value and total values are 176.8 g/m2 and 20.73 Tg, respectively; (3) 69.51% of the area has shown an increasing trend and 30.14% of the area showed a downward trend, mainly concentrated in the southeast of Hongyuan County, the northeast of Aba County, and the north of Qumalai County. The research results can provide accurate spatial data and scientific basis for the protection of grassland resources in the HYR.


2019 ◽  
Author(s):  
Manesh Chawla ◽  
Amreek Singh

Abstract. Fast downslope release of snow (avalanche) is a serious hazard to people living in snow bound mountains. Released snow mass can gain sufficient momentum on its down slope path to kill humans, uproot trees and rocks, destroy buildings. Direct reduction of avalanche threat is done by building control structures to add mechanical support to snowpack and reduce or deflect downward avalanche flow. On large terrains it is economically infeasible to use these methods on each high risk site.Therefore predicting and avoiding avalanches is the only feasible method to reduce threat but sufficient snow stability data for accurate forecasting is generally unavailable and difficult to collect. Forecasters infer snow stability from their knowledge of local weather, terrain and sparsely available snowpack observations. This inference process is vulnerable to human bias therefore machine learning models are used to find patterns from past data and generate helpful outputs to minimise and quantify uncertainty in forecasting process. These machine learning techniques require long past records of avalanches which are difficult to obtain. In this paper we propose a data efficient Random Forest model to address this problem. The model can generate a descriptive forecast showing reasoning and patterns which are difficult to observe manually. Our model advances the field by being inexpensive and convenient for operational forecasting due to its data efficiency, ease of automation and ability to describe its decisions.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6013
Author(s):  
Hyun-Soo Park ◽  
Kwang-sig Lee ◽  
Bo-Kyoung Seo ◽  
Eun-Sil Kim ◽  
Kyu-Ran Cho ◽  
...  

This prospective study enrolled 147 women with invasive breast cancer who underwent low-dose breast CT (80 kVp, 25 mAs, 1.01–1.38 mSv) before treatment. From each tumor, we extracted eight perfusion parameters using the maximum slope algorithm and 36 texture parameters using the filtered histogram technique. Relationships between CT parameters and histological factors were analyzed using five machine learning algorithms. Performance was compared using the area under the receiver-operating characteristic curve (AUC) with the DeLong test. The AUCs of the machine learning models increased when using both features instead of the perfusion or texture features alone. The random forest model that integrated texture and perfusion features was the best model for prediction (AUC = 0.76). In the integrated random forest model, the AUCs for predicting human epidermal growth factor receptor 2 positivity, estrogen receptor positivity, progesterone receptor positivity, ki67 positivity, high tumor grade, and molecular subtype were 0.86, 0.76, 0.69, 0.65, 0.75, and 0.79, respectively. Entropy of pre- and postcontrast images and perfusion, time to peak, and peak enhancement intensity of hot spots are the five most important CT parameters for prediction. In conclusion, machine learning using texture and perfusion characteristics of breast cancer with low-dose CT has potential value for predicting prognostic factors and risk stratification in breast cancer patients.


Author(s):  
Qian Zhao ◽  
Ning Xu ◽  
Hui Guo ◽  
Jianguo Li

Background: Sepsis is a life-threatening disease caused by the dysregulated host response to the infection, and being the major cause of death to patients in intensive care unit (ICU). Objective: Early diagnosis of sepsis could significantly reduce in-hospital mortality. Though generated from infection, the development of sepsis follows its own psychological process and disciplines, alters with gender, health status and other factors. Hence, the analysis of mass data by bioinformatic tools and machine learning is a promising method for exploring early diagnosis manners. Method: We collected miRNA and mRNA expression data of sepsis blood samples from Gene Expression Omnibus (GEO) and ArrayExpress databases, screened out differentially expressed genes (DEGs) by R software, predicted miRNA targets on TargetScanHuman and miRTarBase websites, conducted Gene Ontology (GO) term and KEGG pathway enrichment based on overlapping DEGs. The STRING database and Cytoscape were used to build protein-protein interaction (PPI) network and predict hub genes. Then we constructed a Random Forest model by using the hub genes to assess sample type. Results: Bioinformatic analysis of GEO dataset revealed 46 overlapping DEGs in sepsis. The PPI network analysis identified five hub genes, SOCS3, KBTBD6, FBXL5, FEM1C and WSB1. Random Forest model based on these five hub genes was used to assess GSE95233 and GSE95233 datasets, and the area under curve (AUC) of ROC are 0.900 and 0.7988, respectively, which confirmed the efficacy of this model. Conclusion: The integrated analysis of gene expression in sepsis and the effective Random Forest model built in this study may provide promising diagnostic methods for sepsis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Eun Kyung Park ◽  
Kwang-sig Lee ◽  
Bo Kyoung Seo ◽  
Kyu Ran Cho ◽  
Ok Hee Woo ◽  
...  

AbstractRadiogenomics investigates the relationship between imaging phenotypes and genetic expression. Breast cancer is a heterogeneous disease that manifests complex genetic changes and various prognosis and treatment response. We investigate the value of machine learning approaches to radiogenomics using low-dose perfusion computed tomography (CT) to predict prognostic biomarkers and molecular subtypes of invasive breast cancer. This prospective study enrolled a total of 723 cases involving 241 patients with invasive breast cancer. The 18 CT parameters of cancers were analyzed using 5 machine learning models to predict lymph node status, tumor grade, tumor size, hormone receptors, HER2, Ki67, and the molecular subtypes. The random forest model was the best model in terms of accuracy and the area under the receiver-operating characteristic curve (AUC). On average, the random forest model had 13% higher accuracy and 0.17 higher AUC than the logistic regression. The most important CT parameters in the random forest model for prediction were peak enhancement intensity (Hounsfield units), time to peak (seconds), blood volume permeability (mL/100 g), and perfusion of tumor (mL/min per 100 mL). Machine learning approaches to radiogenomics using low-dose perfusion breast CT is a useful noninvasive tool for predicting prognostic biomarkers and molecular subtypes of invasive breast cancer.


Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1013
Author(s):  
Yoon Hee Lee ◽  
Gi-Ung Kang ◽  
Se Young Jeon ◽  
Setu Bazie Tagele ◽  
Huy Quang Pham ◽  
...  

Although emerging evidence revealed that the gut microbiome served as a tool and as biomarkers for predicting and detecting specific cancer or illness, it is yet unknown if vaginal microbiome-derived bacterial markers can be used as a predictive model to predict the severity of CIN. In this study, we sequenced V3 region of 16S rRNA gene on vaginal swab samples from 66 participants (24 CIN 1−, 42 CIN 2+ patients) and investigated the taxonomic composition. The vaginal microbial diversity was not significantly different between the CIN 1− and CIN 2+ groups. However, we observed Lactobacillus amylovorus dominant type (16.7%), which does not belong to conventional community state type (CST). Moreover, a minimal set of 33 bacterial species was identified to maximally differentiate CIN 2+ from CIN 1− in a random forest model, which can distinguish CIN 2+ from CIN 1− (area under the curve (AUC) = 0.952). Among the 33 bacterial species, Lactobacillus iners was selected as the most impactful predictor in our model. This finding suggests that the random forest model is able to predict the severity of CIN and vaginal microbiome may play a role as biomarker.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 142 ◽  
Author(s):  
Steven J. Erly ◽  
Joshua T. Herbeck ◽  
Roxanne P. Kerani ◽  
Jennifer R. Reuer

Molecular cluster detection can be used to interrupt HIV transmission but is dependent on identifying clusters where transmission is likely. We characterized molecular cluster detection in Washington State, evaluated the current cluster investigation criteria, and developed a criterion using machine learning. The population living with HIV (PLWH) in Washington State, those with an analyzable genotype sequences, and those in clusters were described across demographic characteristics from 2015 to2018. The relationship between 3- and 12-month cluster growth and demographic, clinical, and temporal predictors were described, and a random forest model was fit using data from 2016 to 2017. The ability of this model to identify clusters with future transmission was compared to Centers for Disease Control and Prevention (CDC) and the Washington state criteria in 2018. The population with a genotype was similar to all PLWH, but people in a cluster were disproportionately white, male, and men who have sex with men. The clusters selected for investigation by the random forest model grew on average 2.3 cases (95% CI 1.1–1.4) in 3 months, which was not significantly larger than the CDC criteria (2.0 cases, 95% CI 0.5–3.4). Disparities in the cases analyzed suggest that molecular cluster detection may not benefit all populations. Jurisdictions should use auxiliary data sources for prediction or continue using established investigation criteria.


Sign in / Sign up

Export Citation Format

Share Document