scholarly journals The expression of ATP-sensitive potassium channels in human umbilical arteries with severe pre-eclampsia

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benlan Yin ◽  
Yujiao Zhang ◽  
Xiaohong Wei ◽  
Chunrong Pang ◽  
Ting Hou ◽  
...  

AbstractThe aim of this study is to establish the expression of ATP-sensitive potassium channels(KATP) in human umbilical arteries with severe pre-eclampsia. Real-time quantitative PCR and western blotting were used to detect the mRNA and protein expression levels of KATP channel subunits Kir6.1 and SUR2B in human umbilical arteries from normal pregnant and those with severe pre-eclampsia, early onset severe pre-eclampsia and late onset severe pre-eclampsia. The mRNA and protein levels of SUR2B in the severe pre-eclampsia group were lower than those in the normal group (P < 0.001), and the expression of Kir6.1 was not statistically significant between the two groups (P > 0.05). The mRNA and protein levels of SUR2B in early onset severe pre-eclampsia group were lower than those in late onset severe pre-eclampsia group (P < 0.001). There was no significant difference in expression of Kir6.1 between the two groups (P > 0.05). The mRNA and protein expression levels of SUR2B in pregnant women with severe pre-eclampsia were lower than those in normal pregnant women, suggesting that the expression of the SUR2B of the KATP channel may be related to the occurrence and development of severe pre-eclampsia. Compared with late onset severe pre-eclampsia, the mRNA and protein expression levels of SUR2B were lower in the umbilical arteries of women with early onset severe pre-eclampsia, suggesting that the occurrence time of severe pre-eclampsia may be related to the extent reduced expression of the SUR2B of the KATP channel.

2019 ◽  
Author(s):  
Chitra Devi Ramachandran ◽  
Khadijeh Gholami ◽  
Sau-Kuen Lam ◽  
Mohd Rais Mustafa ◽  
See-Ziau Hoe

AbstractAn increase in blood pressure (BP) by a high-salt (HS) diet may involve the changes in the expression of epithelium sodium channels (ENaCs) and aquaporins (AQPs) in the kidney which affect the sodium- and water-handling mechanisms. In the present study, spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were exposed to HS and regular-salt (RS) diets for 6 weeks and fluid intake was monitored. After 6 weeks, mean arterial pressure (MAP) and plasma hormonal activity of atrial natriuretic peptide (ANP), levels of angiotensin II (Ang II), aldosterone and arginine vasopressin (AVP) were determined. The expression of mRNA and protein levels of ENaC and AQP subunits in kidneys were quantified by real-time PCR and Western blotting. High-salt diet caused higher MAP only in SHRs and higher fluid intake in both strains of rats when compared with their respective controls on RS diet. The plasma levels of Ang II and aldosterone were low in both SHRs and WKY rats fed with HS diet. Meanwhile, plasma ANP activity was high in both strains of rats on HS diet; whilst the AVP showed vice versa effects. The renal expression of mRNA and protein levels of α- and γ-ENaCs was lowered by HS diet in both SHRs and WKY rats. Although β-ENaC mRNA and protein expression levels were depressed in SHRs but they were enhanced in WKY rats. On the other hand, AQP-1, 2 and 7 mRNA and protein expression levels were lowered in both strains of rats fed with HS diet, while that of AQP-3, 4 and 6 showed no significant changes. The suppression of mRNA and protein expression levels of ENaC and AQP subunits suggests that the HS-induced increase in the MAP of SHRs may not be due to the renal sodium and water retention solely.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Wen-cong Li ◽  
Su-xian Zhao ◽  
Wei-guang Ren ◽  
Hui-juan Du ◽  
Yu-guo Zhang ◽  
...  

The liver is the only visceral organ that exhibits a remarkable capability of regenerating in response to partial hepatectomy (PH) or chemical injury. Improving liver regeneration (LR) ability is the basis for the favourable treatment outcome of patients after PH, which can serve as a potential indicator for postoperative survival. The present study aimed to investigate the protective effects of Yiqi Huoxue recipe (YQHX) on LR after PH in rats and further elucidate its underlying mechanism. A two-thirds PH rat model was used in this study. Wistar rats were randomly divided into four groups: sham-operated, PH, YQHX + PH, and Fuzheng Huayu decoction (FZHY) + PH groups. All rats were sacrificed under anesthesia at 24 and 72 h after surgery. The rates of LR were calculated, and the expression levels of cyclin D1 and c-jun were determined by immunohistochemical staining. The protein levels of p-JNK1/2, JNK1/2, p-c-jun, c-jun, Bax, and Bcl-2 were detected by Western blotting, while the mRNA levels of JNK1, JNK2, c-jun, Bax, and Bcl-2 were examined by real-time polymerase chain reaction (RT-PCR). At the corresponding time points, YQHX and FZHY administration dramatically induced the protein levels of p-JNK1/2 compared to the PH group p<0.05, while FZHY + PH group showed prominently increase in p-JNK1/2 protein levels compared to the YQHX + PH group p<0.05. A similar trend was observed for the expression levels of p-c-jun. Compared to the PH group, YQHX and FZHY markedly reduced the mRNA and protein expression levels of Bax at 24 h after PH, while those in the FZHY + PH group decreased more obviously p<0.05. Besides, in comparison with the PH group, YQHX and FZHY administration predominantly upregulated the mRNA and protein expression levels of Bcl-2 at 24 and 72 h after PH p<0.05. In conclusion, YQHX improves LR in rats after PH by inhibiting hepatocyte apoptosis via the JNK signaling pathway.


2019 ◽  
Vol 31 (4) ◽  
pp. 810 ◽  
Author(s):  
Onalenna Kereilwe ◽  
Hiroya Kadokawa

Anti-Müllerian hormone (AMH) is secreted from ovaries and stimulates gonadotrophin secretion from bovine gonadotroph cells. Other important hormones for endocrinological gonadotroph regulation (e.g. gonadotrophin-releasing hormone, inhibin and activin) have paracrine and autocrine roles. Therefore, in this study, AMH expression in bovine gonadotroph cells and the relationships between AMH expression in the bovine anterior pituitary (AP) and oestrous stage, age and breed were evaluated. AMH mRNA expression was detected in APs of postpubertal heifers (26 months old) by reverse transcription-polymerase chain reaction. Based on western blotting using an antibody to mature C-terminal AMH, AMH protein expression was detected in APs. Immunofluorescence microscopy utilising the same antibody indicated that AMH is expressed in gonadotrophs. The expression of AMH mRNA and protein in APs did not differ between oestrous phases (P&gt;0.1). We compared expression levels between old Holsteins (79.2±10.3 months old) and young (25.9±0.6 months old) and old Japanese Black females (89.7±20.3 months old). The APs of old Holsteins exhibited lower AMH mRNA levels (P&lt;0.05) but higher AMH protein levels than those of young Japanese Black females (P&lt;0.05). In conclusion, bovine gonadotrophs express AMH and this AMH expression may be breed-dependent.


2021 ◽  
Vol 22 (23) ◽  
pp. 12791
Author(s):  
Alexia Grangeon ◽  
Valérie Clermont ◽  
Azemi Barama ◽  
Fleur Gaudette ◽  
Jacques Turgeon ◽  
...  

The human small intestine can be involved in the first-pass metabolism of drugs. Under this condition, members of the CYP450 superfamily are expected to contribute to drug presystemic biotransformation. The aim of this study was to quantify protein expression levels of 16 major CYP450 isoforms in tissue obtained from nine human organ donors in seven subsections of the small intestine, i.e., duodenum (one section, N = 7 tissue samples), jejunum (three subsections (proximal, mid and distal), N = 9 tissue samples) and ileum (three subsections, (proximal, mid and distal), N = 9 tissue samples), using liquid chromatography tandem mass spectrometry (LC-MS/MS) based targeted proteomics. CYP450 absolute protein expression levels were compared to mRNA levels and enzyme activities by using established probe drugs. Proteins corresponding to seven of sixteen potential CYP450 isoforms were detected and quantified in various sections of the small intestine: CYP2C9, CYP2C19, CYP2D6, CYP2J2, CYP3A4, CYP3A5 and CYP4F2. Wide inter-subject variability was observed, especially for CYP2D6. CYP2C9 (p = 0.004) and CYP2C19 (p = 0.005) expression levels decreased along the small intestine. From the duodenum to the ileum, CYP2J2 (p = 0.001) increased, and a trend was observed for CYP3A5 (p = 0.13). CYP3A4 expression was higher in the jejunum than in the ileum (p = 0.03), while CYP4F2 expression was lower in the duodenum compared to the jejunum and the ileum (p = 0.005). CYP450 protein levels were better correlated with specific isoform activities than with mRNA levels. This study provides new data on absolute CYP450 quantification in human small intestine that could improve physiologically based pharmacokinetic models. These data could better inform drug absorption profiles while considering the regional expression of CYP450 isoforms.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaobei Ni ◽  
Xin Li ◽  
Yueshuai Guo ◽  
Tao Zhou ◽  
Xuejiang Guo ◽  
...  

Many pregnant women suffer miscarriages during early gestation, but the description of these early pregnancy losses (EPL) can be somewhat confusing because of the complexities of early development. Thus, the identification of proteins with different expression profiles related to early pregnancy loss is essential for understanding the comprehensive pathophysiological mechanism. In this study, we report a gel-free tandem mass tags- (TMT-) labeling based proteomic analysis of five placental villous tissues from patients with early pregnancy loss and five from normal pregnant women. The application of this method resulted in the identification of 3423 proteins and 19647 peptides among the patient group and the matched normal control group. Qualitative and quantitative proteomic analysis revealed 51 proteins to be differentially abundant between the two groups (≥1.2-fold, Student'st-test,P<0.05). To obtain an overview of the biological functions of the proteins whose expression levels altered significantly in EPL group, gene ontology analysis was performed. We also investigated the twelve proteins with a difference over 1.5-fold using pathways analysis. Our results demonstrate that the gel-free TMT-based proteomic approach allows the quantification of differences in protein expression levels, which is useful for obtaining molecular insights into early pregnancy loss.


Author(s):  
Priyanka Singh ◽  
Sanjay Kumar Bhadada ◽  
Divya Dahiya ◽  
Uma Nahar Saikia ◽  
Ashutosh Kumar Arya ◽  
...  

Abstract Purpose Glial cells missing 2 (GCM2), a zinc finger-transcription factor, is essentially required for the development of parathyroid glands. We sought to identify if the epigenetic alterations in the GCM2 transcription are involved in the pathogenesis of sporadic parathyroid adenoma. In addition, we examined the association between promoter methylation and histone modifications with disease indices. Experimental design mRNA and protein expression of GCM2 were analyzed by RT-qPCR and immunohistochemistry in 33 adenomatous and 10 control parathyroid tissues. DNA methylation and histone methylation/acetylation of GCM2 promoter were measured by bisulfite sequencing and ChIP-qPCR. Additionally, we investigated the role of epigenetic modifications on GCM2 and DNA methyltransferase 1 (DNMT1) expression in PTH-C1 cells by treating with 5-aza 2’deoxycytidine (DAC) and BRD4770 and assessed for GCM2 mRNA and DNMT1 protein levels. Results mRNA and protein expression of GCM2 were lower in sporadic adenomatous than in control parathyroid tissues. This reduction correlated with hypermethylation (P&lt;0.001) and higher H3K9me3 levels in GCM2 promoter (P&lt;0.04) in adenomas. In PTH-C1 cells, DAC treatment resulted in increased GCM2 transcription and decreased DNMT1 protein expression, while cells treated with the BRD4770 showed reduced H3K9me3 levels but a non-significant change in GCM2 transcription. Conclusion These findings suggest the concurrent association of promoter hypermethylation and higher H3K9me3 with the repression of GCM2 expression in parathyroid adenomas. Treatment with DAC restored GCM2 expression in PTH-C1 cells. Our results showed a possible epigenetic landscape in the tumorigenesis of parathyroid adenoma and also that DAC may be promising avenues of research for parathyroid adenoma therapeutics.


2020 ◽  
Vol 100 (4) ◽  
pp. 657-664
Author(s):  
Jiuxiu Ji ◽  
Taihua Jin ◽  
Rui Zhang ◽  
Angang Lou ◽  
Yingying Chen ◽  
...  

Yanbian yellow cattle breeding is limited by its slow growth. We previously found that the miRNA miR-6523a is differentially expressed between Yanbian yellow cattle and Han Yan cattle, which differ in growth characteristics. In this study, we evaluated the effects of miR-6523a on growth hormone (GH) secretion in pituitary cells of Yanbian yellow cattle. Bioinformatics analyses using TargetScan and RNAhybrid, as well as dual luciferase reporter assays, showed that miR-6523a targets the 3′ untranslated region of somatostatin receptor 5 (SSTR5). We further found that the mRNA and protein expression levels of GH in pituitary cells were significantly higher in cells treated with miR-6523a mimic than in the control group (P = 0.0082 and P = 0.0069). The GH mRNA and protein expression levels were lower in cells treated with miR-6523a inhibitor than in the control group, but the difference was not significant (P = 0.064 and P = 0.089). SSTR5 mRNA and protein levels were inhibited by miR-6523a mimic compared with the control group (P = 0.0024 and P = 0.0028) and were elevated slightly by miR-6523a inhibitor (P = 0.093 and P = 0.091). These results prove that miR-6523a regulates GH secretion in pituitary cells by SSTR5. More broadly, these findings provide a basis for studies of the roles of miRNAs in animal growth and development.


2000 ◽  
Vol 278 (2) ◽  
pp. F238-F245 ◽  
Author(s):  
Ian V. Silva ◽  
Carol J. Blaisdell ◽  
Sandra E. Guggino ◽  
William B. Guggino

Mutations in the chloride channel, ClC-5, have been described in several inherited diseases that result in the formation of kidney stones. To determine whether ClC-5 is also involved in calcium homeostasis, we investigated whether ClC-5 mRNA and protein expression are modulated in rats deficient in 1α,25(OH)2 vitamin D3 with and without thyroparathyroidectomy. Parathyroid hormone (PTH) was replaced in some animals. Vitamin D-deficient, thyroparathyrodectomized rats had lower serum and higher urinary calcium concentrations compared with control animals as well as lower serum PTH and calcitonin concentrations. ClC-5 mRNA and protein levels in the cortex decrease in vitamin D-deficient, thyroparathyroidectomized rats compared with both control and vitamin D-deficient animals. ClC-5 mRNA and protein expression increase near to control levels in vitamin D-deficient, thyroparathyroidectomized rats injected with PTH. No significant changes in ClC-5 mRNA and protein expression in the medulla were detected in any experimental group. Our results suggest that PTH modulates the expression of ClC-5 in the kidney cortex and that neither 1α,25(OH)2 vitamin D3 nor PTH regulates ClC-5 expression in the medulla. The pattern of expression of ClC-5 varies with urinary calcium. Animals with higher urinary calcium concentrations have lower levels of ClC-5 mRNA and protein expression, suggesting that the ClC-5 chloride channel plays a role in calcium reabsorption.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4203 ◽  
Author(s):  
Lei ◽  
Gao ◽  
Feng ◽  
Huang ◽  
Bian ◽  
...  

Endogenous formaldehyde is generated as a normal metabolite via bio-catalysis of γ-glutamyl transpeptidase (GGT) and L-cysteine sulfoxide lyase (C-S lyase) during the growth and development of Lentinula edodes. In this study, we investigated the mRNA and protein expression levels, the activities of GGT and C-S lyase, and the endogenous formaldehyde content in L. edodes at different growth stages. With the growth of L. edodes, a decrease was found in the mRNA and protein expression levels of GGT, while an increase was observed in the mRNA and protein expression levels of C-S lyase as well as the activities of GGT and C-S lyase. Our results revealed for the first time a positive relationship of formaldehyde content with the expression levels of Csl (encoding Lecsl) and Lecsl (C-S lyase protein of Lentinula edodes) as well as the enzyme activities of C-S lyase and GGT during the growth of L. edodes. This research provided a molecular basis for understanding and controlling the endogenous formaldehyde formation in Lentinula edodes in the process of growth.


Sign in / Sign up

Export Citation Format

Share Document